Rectal Temperature Maintenance Using a Heat Exchanger of Cardioplegic System in Cardiopulmonary Bypass Model for Rats

쥐 심폐바이패스 모델에서 심정지액 주입용 열교환기를 이용한 직장체온 유지

  • Choi Se-Hoon (Department of Thoracic and Cardiovascular Surgery, College of Medicine) ;
  • Kim Hwa-Ryong (Department of Biomedical Engineering, Seoul National University Hospital) ;
  • Paik In-Hyuck (Department of Thoracic and Cardiovascular Surgery, College of Medicine) ;
  • Moon Hyun-Jong (Department of Thoracic and Cardiovascular Surgery, Boramae Hospital) ;
  • Kim Won-Gon (Department of Thoracic and Cardiovascular Surgery, College of Medicine)
  • 최세훈 (서울대학교 의과대학 흉부외과학교실) ;
  • 김화룡 (서울대학교병원 의공학과) ;
  • 백인혁 (서울대학교 의과대학 흉부외과학교실) ;
  • 문현종 (서울시립보라매병원 흉부외과) ;
  • 김원곤 (서울대학교 의과대학 흉부외과학교실)
  • Published : 2006.07.01

Abstract

Background: Small animal cardiopulmonary bypass (CPB) model would be a valuable tool for investigating path-ophysiological and therapeutic strategies on bypass. The main advantages of a small animal model include the reduced cost and time, and the fact that it does not require a full scale operating environment. However the rat CPB models have a number of technical limitations. Effective maintenance and control of core temperature by a heat exchanger is among them. The purpose of this study is to confirm the effect of rectal temperature maintenance using a heat exchanger of cardioplegia system in cardiopulmonary bypass model for rats. Material and Method: The miniature circuit consisted of a reservoir, heat exchanger, membrane oxygenator, roller pump, and static priming volume was 40 cc, Ten male Sprague-Dawley rats (mean weight 530 gram) were divided into two groups, and heat exchanger (HE) group was subjected to CPB with HE from a cardioplegia system, and control group was subjected to CPB with warm water circulating around the reservoir. Partial CPB was conducted at a flow rate of 40 mg/kg/min for 20 min after venous cannulation (via the internal juglar vein) and arterial cannulation (via the femoral artery). Rectal temperature were measured after anesthetic induction, a ter cannulation, 5, 10, 15, 20 min after CPB. Arterial blood gas with hematocrit was also analysed, 5 and 15 min after CPB. Result: Rectal temperature change differed between the two groups (p<0.01). The temperatures of HE group were well maintained during CPB, whereas control group was under progressive hypothermia, Rectal temperature 20 min after CPB was $36.16{\pm}0.32^{\circ}C$ in the HE group and $34.22{\pm}0.36^{\circ}C$ in the control group. Conclusion: We confirmed the effect of rectal temperature maintenance using a heat exchanger of cardioplegia system in cardiopulmonary bypass model for rats. This model would be a valuable tool for further use in hypothermic CPB experiment in rats.

배경: 쥐를 이용한 심폐바이패스 모델은 시간 및 비용의 절감, 관리의 용이, 큰 실험실의 불필요, 그리고 반복실험의 용이 등 많은 장점이 있으나 기술적인 어려움 또한 크다. 열교환기를 이용한 효율적인 중심체온 유지 및 조절 역시 이러한 문제점 중의 하나이다. 이에 본 연구에서는 쥐 심폐바이패스 모델을 위해 기존의 상용화된 산화기를 소동물용으로 개조한 뒤 심정지액 주입용 소형 열교환기를 이용하여 충전액을 최소화한 상태에서 인공심폐기에 의한 효율적인 체온 유지가 가능한지를 보고자 하였다. 대상 및 방법: 수컷 쥐(Sprague-Dawley,평균 530 g) 10마리를 각 5예씩 나누어 열교환기를 사용한 군과 사용하지 않은 군으로 구분하였다. 열교환기는 심정지액 주입용 열교환기를 개조하여 사용하였으며 산화기를 포함한 전체 정지 충전용량은 40 cc였다. 열교환기를 사용하지 않은 군에서는 저혈조 주위에 온수를 순환시켰다. 실험동물 마취 후 동맥 삽관은 대퇴동맥 및 내경동맥에 정맥 삽관은 외경정맥에 시행하고 부분 심폐바이패스(40 ml/kg/min)를 20분간 유지하였다. 두 군간의 비교 분석을 위해 직장 체온을 각각 마취 직후, 동정맥 삽관 후, 심폐바이패스 후 5, 10, 15, 20분에 측정하였다. 심폐바이패스 후 5, 15분에는 헤모글로빈 및 동맥혈 가스분석을 동시에 측정하였다. 결과: 쥐에서의 심폐바이패스 운용은 안정적으로 유지되었으며, 심폐바이패스 후 5분부터 두 군간의 체온 차이는 유의하였다(p<0.01). 20분 후 체온은 각각 $36.16{\pm}0.32^{\circ}C$$34.22{\pm}0.36^{\circ}C$였다. 결론: 본 연구는 소동물 심폐바이패스 모델에서 심정지액 주입용 열교환기를 이용하여 충전액에 대한 영향을 최소화하면서 효율적인 체온유지가 가능함을 증명하였다. 이러한 실험 결과는 향후 저체온 심폐바이패스 운용에 관한 실험 모델로 쥐를 폭넓게 이용할 수 있다는 가능성을 제시한다는 점에서 그 의의가 크다.

Keywords

References

  1. Kirklin JW. Hypothermia, circulatory arrest, and cardiopulmonary bypass. In: Barratt-Boyes BG. Cardiac surgery. 3rd ed. New York: Churchill Livingstone. 2003;66-130
  2. Asimakopoulos G, Smith PLC, Ratnatunga CP, et al. Lung injury and acute respiratory distress syndrome after cardiopulmonary bypass. Ann Thorac Surg 1999;68:1107-15 https://doi.org/10.1016/S0003-4975(99)00781-X
  3. Popovic P, Horecky J, Popovic VP. Hypothermic cardiopulmonary bypass in white rats. Ann Surg 1968;168:298-301 https://doi.org/10.1097/00000658-196808000-00019
  4. Dong GH, Xu B, Wang CT, et al. A rat model of cardiopulmonary bypass with excellent survival. J Surg Res 2005; 123:171-5 https://doi.org/10.1016/j.jss.2004.08.007
  5. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg 2002;21;232-44 https://doi.org/10.1016/S1010-7940(01)01099-5
  6. Hamamoto M, Suga M, Nakatani T, et al. Phosphodiesterase type 4 inhibitor prevents acute lung infury induced by cardiopulmonary bypass in a rat model. Eur J Cardiothorac Surg 2004;25:833-8 https://doi.org/10.1016/j.ejcts.2004.01.054
  7. Ballaux PK, Gourlay T, Ratnatunga CP, Taylor KM. A literature review of cardiopulmonary bypass models for rats. Perfusion 1999;14:411-7 https://doi.org/10.1177/026765919901400603
  8. Proctor E. An oxygenator for cardiopulmonary bypass in the rat. J Surg Res 1976;22:124-7 https://doi.org/10.1016/0022-4804(77)90051-8
  9. Fabre O, Zegdi R, Vincentelli A, et al. A recovery model of partial cardiopulmonary bypass in the rat. Perfusion 2001; 16:215-20 https://doi.org/10.1177/026765910101600307
  10. Grocott H, Mackensen GB, Newman MF, Warner DS. Neurological injury during cardiopulmonary bypass in the rat. Perfusion 2001;16:75-81 https://doi.org/10.1177/026765910101600i111
  11. Gourlay T, Philippe PK, Draper ERC, Taylor KM. Early experience with a new technique and technology designed for the study of pulsatile cardiopulmonary bypass in the rat. Perfusion 2002;17:191-8 https://doi.org/10.1191/0267659102pf567oa
  12. Alexander B, Al Ani HR. Prolonged partial cardiopulmonary bypass in rats. J Surg Res 1983;35:28-34 https://doi.org/10.1016/0022-4804(83)90122-1
  13. Sasaki S, Takigami K, Shiya N, Yasuda K. Partial cardiopulmonary bypass in rats for evaluating ischemia-reperfusion injury. ASAIO J 1996;42:1027-30 https://doi.org/10.1097/00002480-199642060-00017
  14. You XM, Nasrallah F, Darling E, et al. Rat cardiopulmonary bypass model: application of a miniature extracorporeal circuit composed of asanguinous prime. J Extracorpor Technol 2005;37:60-5
  15. Proctor E. Partial and total circulatory support in the rat using a small heart-lung machine [proceedings]. J Physiol Lond 1978;281:8-10