Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior

  • Song Ki-Won (School of Chemical Engineering, Pusan National University) ;
  • Kuk Hoa-Youn (School of Chemical Engineering, Pusan National University) ;
  • Chang Gap-Shik (School of Chemical Engineering, Pusan National University)
  • Published : 2006.06.01

Abstract

Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude(${\gamma}_0{\approx}150%$) beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (3) At sufficiently large strain amplitude range (${\gamma}_0>200%$), a viscous behavior becomes superior to an elastic behavior. (4) An ability to flow without fracture at large strain amplitudes is one of the most important differences between typical strong gel systems and concentrated xanthan gum solutions. (5) The linear viscoelastic behavior of concentrated xanthan gum solutions is dominated by an elastic nature rather than a viscous nature and a gel-like structure is present in these systems. (6) As the polymer concentration is increased, xanthan gum solutions become more elastic and can be characterized by a slower relaxation mechanism. (7) Concentrated xanthan gum solutions do not form a chemically cross-linked stable (strong) gel but exhibit a weak gel-like behavior. (8) A fractional derivative model may be an attractive means for predicting a linear viscoelastic behavior of concentrated xanthan gum solutions but classified as a semi-empirical relationship because there exists no real physical meaning for the model parameters.

Keywords

References

  1. Ahmed, J. and H.S. Ramaswamy, 2004, Effect of high-hydrostatic pressure and concentration on rheological characteristics of xanthan gum, Food Hydrocolloids 18, 367-373 https://doi.org/10.1016/S0268-005X(03)00123-1
  2. Alupei, I.C., M. Popa, M. Hamcerencu and M.J.M. Abadie, 2002, Superabsorbant hydrogels based on xanthan and poly (vinyl alchol). 1. The study of the swelling properties, Eur. Polym. J. 38, 2313-2320 https://doi.org/10.1016/S0014-3057(02)00106-4
  3. Bagley, R.L. and P.J. Torvik, 1983, A theoretical bases for the application of fractional calculus to viscoelasticity, J. Rheol. 27, 201-210 https://doi.org/10.1122/1.549724
  4. Bagley, R.L. and P.J. Torvik, 1986, On the fractional calculus model of viscoelastic behavior, J. Rheol. 30, 133-155 https://doi.org/10.1122/1.549887
  5. Born, K., V. Langendorff and P. Boulenguer, 2001, Biopolymers, Vol. 5, Wiley-Interscience, New York, USA
  6. Bosworth, R.C.L., 1946, A definition of plasticity, Nature 137, 447
  7. Bower, C., C. Gallegos, M.R. Mackley and J.M. Madiedo, 1999, The rheological and microstructural characterization of the non-linear flow behavior of concentrated oil-in-water emulsions, Rheol. Acta 38, 145-159 https://doi.org/10.1007/s003970050164
  8. Callet, F., M. Milas and M. Rinaudo, 1987, Influence of acetyl and pyruvate contents on rheological properties of xanthan in dilute solution, Intern. J. Biol. Macromol. 9, 291-293 https://doi.org/10.1016/0141-8130(87)90068-7
  9. Camesano, T.A. and K.J. Wilkinson, 2001, Single molecule study of xanthan conformation using atomic force microscopy, Biomacromolecules 2, 1184-1191 https://doi.org/10.1021/bm015555g
  10. Carnali, J.O., 1992, Gelation in physically associating biopolymer systems, Rheol. Acta 31, 399-412 https://doi.org/10.1007/BF00701120
  11. Carriere, C.J., E.J. Amis, J.L. Schrag and J.D. Ferry, 1993, Dilute-solution dynamic viscoelastic properties of xanthan polysaccharide, J. Rheol. 37, 469-478 https://doi.org/10.1122/1.550454
  12. Cha, J.H., G.S. Chang and K.W. Song, 2002, Large amplitude oscillatory shear flow behavior of commercial mayonnaises: Preliminary experimental study, Theor. Appl. Rheol. 6, 121-125
  13. Chang, G.S. and K.W. Song, 2000, Large amplitude oscillatory shear flow behavior of viscoelastic liquids: Fourier transform analysis, Theor. Appl. Rheol. 4, 62-65
  14. Chang G.S., J.S. Koo and K.W. Song, 2002, Wall slip of vaseline (petrolatum) in steady shear rheometry: Its observation and elimination (or minimization), Theor. Appl. Rheol. 6, 97-100
  15. Chang, G.S., J.S. Koo and K.W. Song, 2003, Wall slip of vaseline in steady shear rheometry, Korea-Australia Rheol. J. 15, 55-61
  16. Daskarakis, S.A., 1994, in Handbook of Pharmaceutical Excipients (A. Wade and P.J. Weller Eds.), American Pharmaceutical Association, Washington DC, USA, 562-563
  17. Dealy, J.M. and K.F. Wissburn, 1990, Melt Rheology and Its Role in Plastics Processing: Theory and Applications, Van Nostrand Reinhold, New York, USA
  18. Dumitriu, S., M. Dumitriu and G. Teaca, 1990, Bioactive polymers 65: Studies of cross-linked xanthan hydrogels as supports in drug retardation, Clin. Mater. 6, 265-276 https://doi.org/10.1016/0267-6605(90)90063-2
  19. Dumitriu, S. and E. Chornet, 1997, Immobilization of xylanase in chitosan-xanthan hydrogels, Biotech. Prog. 13, 539-545 https://doi.org/10.1021/bp970059i
  20. Ferry, J.D., 1980, Viscoelastic Properties of Polymers, 3rd ed., John Wiley & Sons., New York, USA
  21. Friedrich, C., 1991, Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta 30, 151-158 https://doi.org/10.1007/BF01134604
  22. Garcia-Ochoa, F., V.E. Santos and A. Alcon, 1997, Xanthan gum production in a laboratory aerated stirred tank bioreactor, Chem. Biochem. Eng. J. 11, 69-74
  23. Garcia-Ochoa, F. and E. Gomez, 1998, Mass transfer coefficient in stirred tank reactors for xanthan solutions, Biochem. Eng. J. 1, 1-10 https://doi.org/10.1016/S1369-703X(97)00002-8
  24. Garcia-Ochoa, F., V.E. Santos, J.A. Casas and E. Gomez, 2000, Xanthan gum : Production, recovery, and properties, Biotechnol. Adv. 18, 549-579 https://doi.org/10.1016/S0734-9750(00)00050-1
  25. Giacomin, A.J. and J.M. Dealy, 1993, Large-amplitude oscillatory shear, in Techniques in Rheological Measurement (A.A. Collyer Eds.), Chapmon & Hall, London, UK, 99-121
  26. Giboreau, A., G. Cuvelier and B. Launay, 1994, Rheological behavior of three biopolymer/water systems with emphasis on yield stress and viscoelastic properties, J. Texture Studies 25, 119-137 https://doi.org/10.1111/j.1745-4603.1994.tb01321.x
  27. Harrison, G., G.V. Franks, V. Tirtaatmadja and D.V. Boger, 1999, Suspensions and polymers: Common links in rheology, Korea- Australia Rheol. J. 11, 197-218
  28. Hoffmann, H. and A. Rauscher, 1993, Aggregating systems with a yield stress value, Colloid Polym. Sci. 271, 390-395 https://doi.org/10.1007/BF00657420
  29. Holzwarth, G. and E.B. Prestridge, 1977, Multistranded helix in xanthan polysaccharide, Science 197, 757-759 https://doi.org/10.1126/science.887918
  30. Hyun, K., S.H. Kim, K.H. Ahn and S.J. Lee, 2002, Large amplitude oscillatory shear as a way to classify the complex fluids, J. Non-Newt. Fluid Mech. 107, 51-65 https://doi.org/10.1016/S0377-0257(02)00141-6
  31. Hyun, K., J.G. Nam, M. Wilhelm, K.H. Ahn and S.J. Lee, 2003, Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow, Korea-Australia Rheol. J. 15, 97-105
  32. Iseki, T., M. Takahashi, H. Hattori, T. Hatakeyama and H. Hatakeyama, 2001, Viscoelastic properties of xanthan gum hydrogels annealed in the sol state, Food Hydrocolloids 15, 503-506 https://doi.org/10.1016/S0268-005X(01)00088-1
  33. Isono, Y. and J.D. Ferry, 1985, Stress relaxation and differential dynamic modulus of polyisobutylene in large shearing deformations, J. Rheol. 29, 273-280 https://doi.org/10.1122/1.549791
  34. Jampala, S.N., S. Manolache, S. Gunasekaran and F.S. Denes, 2005, Plasma-enhanced modification of xanthan gum and its effect on rheological properties, J. Agric. Food Chem. 53, 3618-3625 https://doi.org/10.1021/jf0479113
  35. Kang, K.S. and D.J. Pettit, 1993, in Industrial Gums (R.L. Whistler and J.N. Be Miller Eds.), 3rd ed., Academic Press, New York, USA, 341-398
  36. Katzbauer, B., 1998, Properties and applications of xanthan gum, Polym. Degrad. Stability 59, 81-84 https://doi.org/10.1016/S0141-3910(97)00180-8
  37. Kim, C. and B. Yoo, 2006, Rheological properties of rice starchxanthan gum mixtures, J. Food Eng. 75, 120-128 https://doi.org/10.1016/j.jfoodeng.2005.04.002
  38. Lapasin, R. and S. Pricl, 1999, Rheology of Industrial Polysaccharides: Theory and Applications, Aspen Publishers, Gaithersburg, MD, USA
  39. Lee, H.C. and D.A. Brant, 2002a, Rheology of concentrated isotropic and anisotropic xanthan solutions. 1. A rodlike low molecular weight sample, Macromolecules 35, 2212-2222 https://doi.org/10.1021/ma011526m
  40. Lee, H.C. and D.A. Brant, 2002b, Rheology of concentrated isotropic and anisotropic xanthan solutions. 2. A semiflexible wormlike intermediate molecular weight sample, Macromolecules 35, 2223-2234 https://doi.org/10.1021/ma011527e
  41. Li, W.H., H. Du and N.Q. Guo, 2004, Dynamic behavior of MR suspensions at moderate flux densities, Mater. Sci. Eng. A 371, 9-15 https://doi.org/10.1016/S0921-5093(02)00932-2
  42. Lim, T., J.T. Uhl and R.K. Prud'homme, 1984, Rheology of selfassociating concentrated xanthan solutions, J. Rheol. 28, 367- 379 https://doi.org/10.1122/1.549757
  43. Ma, L. and G.V. Barbosa-Canovas, 1996, Simulating viscoelastic properties of selected food gums and gum mixtures using a fractional derivative model, J. Texture Studies 27, 307-325 https://doi.org/10.1111/j.1745-4603.1996.tb00077.x
  44. Macosko, C.W., 1994, Rheology : Principles, Measurements and Applications, VCH Publishers, New York, USA
  45. Marcotte, M., A.R. Taherian-Hoshahili and H.S. Ramaswamy, 2001, Rheological properties of selected hydrocolloids as a function of concentration and temperature, Food Res. Intern. 34, 695-703 https://doi.org/10.1016/S0963-9969(01)00091-6
  46. Metzler, R. and T.F. Nonnenmacher, 2003, Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials, Intern. J. Plasticity 19, 941- 959 https://doi.org/10.1016/S0749-6419(02)00087-6
  47. Nonnenmacher, T.F., 1991, Fractional relaxation equations for viscoelasticity and related phenomena, in Rheological Modeling: Thermodynamical and Statistical Approaches (J. Casas-Vazquez and D. Jou Eds.), Springer-Verlag, Berlin, Germany, 309-320
  48. Ogawa. K. and T. Yui, 1998, X-ray diffraction study of polysaccharides, in Polysaccharides: Structural Diversity and Functional Versatility (S. Dumitriu Eds.), Marcel Dekker, New York, USA, 101-130
  49. Pal, R., 1995, Oscillatory, creep and steady shear flow behavior of xanthan-thickened oil-in-water emulsions, AIChE J. 41, 783-794 https://doi.org/10.1002/aic.690410405
  50. Palade, L.I., P. Attane, R.R. Huilgol and B. Mena, 1999, Anomalous stability behavior of a properly invariant constitutive equation which generalizes fractional derivative models, Intern. J. Eng. Sci. 37, 315-329 https://doi.org/10.1016/S0020-7225(98)00080-9
  51. Palade, L.I. and J.A. De Santo, 2001, Dispersion equations which model high-frequency linear viscoelastic behavior as described by fractional derivative models, Intern. J. Non-Linear Mech. 36, 13-24 https://doi.org/10.1016/S0020-7462(99)00084-0
  52. Parthasarathy, M. and D.J. Klingenberg, 1999, Large amplitude oscillatory shear of ER suspensions, J. Non-Newt. Fluid Mech. 81, 83-104 https://doi.org/10.1016/S0377-0257(98)00096-2
  53. Phan-Thien, N., M. Safari-Ardi and A. Morales-Patino, 1997, Oscillatory and simple shear flows of a flour-water dough: A constitutive model, Rheol. Acta 36, 38-48 https://doi.org/10.1007/BF00366722
  54. Phan-Thien, N. and M. Safari-Ardi, 1998, Linear viscoelastic properties of flour-water doughs at different water concentrations, J. Non-Newt. Fluid Mech. 74, 137-150 https://doi.org/10.1016/S0377-0257(97)00071-2
  55. Pelletier, E., C. Viebke, J. Meadows and P.A. Williams, 2001, A rheological study of the order-disorder conformational transition of xanthan gum, Biopolymers 59, 339-346 https://doi.org/10.1002/1097-0282(20011015)59:5<339::AID-BIP1031>3.0.CO;2-A
  56. Rochefort, W.E. and S. Middleman, 1987, Rheology of xanthan gum: Salt, temperature, and strain effects in oscillatory and steady shear experiments, J. Rheol. 31, 337-369 https://doi.org/10.1122/1.549953
  57. Roland, C.M., 1990, Dynamic mechanical behavior of filled rubber at small strains, J. Rheol. 34, 25-34 https://doi.org/10.1122/1.550111
  58. Ross, B., 1975, A brief history and exposition of the fundamental theory of fractional calculus, in Fractional Calculus and Its Applications (A. Dold and B. Eckmann Eds.), Springer-Verlag, Berlin, Germany, 1-36
  59. Rossikhin, Y.A. and M.V. Shitikova, 2001, A new method for solving dynamic problems of fractional derivative viscoelasticity, Intern. J. Eng. Sci. 39, 149-176 https://doi.org/10.1016/S0020-7225(00)00025-2
  60. Ross-Murphy, S.B., V.J. Morris and E.R. Morris, 1983, Molecular viscoelasticity of xanthan polysaccharide, Faraday Symp. Chem. Soc. 18, 115-129
  61. Ross-Murphy, S.B. and K.P. Shatwell, 1993, Polysaccharide strong and weak gels, Biorheology 30, 217-227 https://doi.org/10.3233/BIR-1993-303-407
  62. Ross-Murphy, S.B., 1995, Structure-property relationships in food biopolymer gels and solutions, J. Rheol. 39, 1451-1463 https://doi.org/10.1122/1.550610
  63. Santore, M.M. and R.K. Prud'homme, 1990, Rheology of a xanthan broth at low stresses and strains, Carbohydr. Polym. 12, 329-335 https://doi.org/10.1016/0144-8617(90)90074-3
  64. Schott, H., 1990, Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton, PA, USA
  65. Sloninsky, G.L., 1967, Laws of mechanical relaxation processes in polymer, J. Polym. Sci.; Part C 16, 1667-1672
  66. Song, D.Y. and T.Q. Jiang, 1998, Study on the constitutive equation with fractional derivative for the viscoelastic fluids: Modified Jeffreys model and its application, Rheol. Acta 37, 512- 517 https://doi.org/10.1007/s003970050138
  67. Song, K.W., G.S. Chang, C.B. Kim, J.O. Lee and J.S. Paik, 1996, Rheological characterization of aqueous poly(ethylene oxide) solutions (I): Limits of linear viscoelastic response and nonlinear behavior with large amplitude oscillatory shear deformation, J. Korean Fiber Soc. 33, 1083-1093
  68. Song, K.W. and G.S. Chang, 1998, Nonlinear viscoelastic behavior of concentrated polyisobutylene solutions in large amplitude oscillatory shear deformation, Korean J. Rheol. 10, 173- 183
  69. Song, K.W., Y.S. Kim and G.S. Chang, 2006, Rheology of concentrated xanthan gum solutions: Steady shear flow behavior, Fibers and Polymers 7, in press https://doi.org/10.1007/BF02908257
  70. Speers, R.A. and M.A. Tung, 1986, Concentration and temperature dependence of flow behavior of xanthan gum dispersions, J. Food Sci. 51, 96-98 https://doi.org/10.1111/j.1365-2621.1986.tb10844.x
  71. Stokke, B.T., B.E. Christensen and O. Smidsrod, 1998, Macromolecular properties of xanthan, in Polysaccharides: Structural Diversity and Functional Versatility (S. Dumitriu Eds.), Marcel Dekker, New York, USA, 433-472
  72. Talukdar, M.M., I. Vinckier, P. Moldenaers and R. Kinget, 1996, Rheological characterization of xanthan gum and hydroxypropylmethyl cellulose with respect to controlled-release drug delivery, J. Pharm. Sci. 85, 537-540 https://doi.org/10.1021/js950476u
  73. Talukdar, M.M., G.V. Mooter, P. Augustijins, T. Tjandra-Maga, N. Verbeke and R. Kinget, 1998, In vivo evaluation of xanthan gum as a potential excipient for oral controlled-release matrix tablet formation, Intern. J. Pharm. 169, 105-113 https://doi.org/10.1016/S0378-5173(98)00112-4
  74. Tschoegl, N.W., 1989, The Phenomenological Theory of Linear Viscoslasticc Behavior, Springer-Verlag, Berlin, Germany
  75. Urlacher, B. and O. Noble, 1997, in Thickening and Gelling Agents for Food: Xanthan Gums (A. Imeson Eds.), Chapman and Hall, London, UK, 284-312
  76. Wilhelm, M., D. Maring and H.W. Spiess, 1998, Fourier-transform rheology, Rheol. Acta 37, 399-405 https://doi.org/10.1007/s003970050126
  77. Wilhelm, M., P. Reinheimer and M. Ortseifer, 1999, High sensitivity Fourier-transform rheology, Rheol. Acta 38, 349-356 https://doi.org/10.1007/s003970050185
  78. Wilhelm, M., P. Reinheimer, M. Ortseifer, T. Neidhofer and H.W. Spiess, 2000, The cross-over between linear and non-linear mechanical behavior in polymer solutions as detected by Fourier- transform rheology, Rheol. Acta 39, 241-246 https://doi.org/10.1007/s003970000084
  79. Wilhelm, M., 2002, Fourier-transform rheology, Macromol. Mater. Eng. 287, 83-105 https://doi.org/10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
  80. Yosick, J.A., A.J. Giacomin and P. Moldenaers, 1997, A kinetic network model for nonlinear flow behavior of molten plastics in both shear and extension, J. Non-Newt. Fluid Mech. 70, 103-123 https://doi.org/10.1016/S0377-0257(96)01535-2
  81. Yziquel, F., P.J. Carreau and P.A. Tanguy, 1999a, Nonlinear viscoelastic behavior of fumed silica suspensions, Rheol. Acta 38, 14-25 https://doi.org/10.1007/s003970050152
  82. Yziquel, F., P.J. Carreau, M. Moan and P.A. Tanguy, 1999b, Rheological modeling of concentrated colloidal suspensions, J. Non-Newt. Fluid Mech. 86, 133-155 https://doi.org/10.1016/S0377-0257(98)00206-7
  83. Zirnsak, M.A., D.V. Boger and V. Tirtaatmadja, 1999, Steady shear and dynamic rheological properties of xanthan gum solutions in viscous solvents, J. Rheol. 43, 627-650 https://doi.org/10.1122/1.551007