References
- Alexander, M. 1999. Biodegradation and Bioremediation, 2nd ed. Academic Press, San Diego
- Birnbaum, S. 1993. Immobilization of Macromolecules and Cells. p.23-35. In D.B. Sleytr, P. Messner, D. Pum, and M. Sara (eds) Immobilized Macromolecules: Application Potentials. Springer Verlag, Germany
- Bruheim, P., H. Bredholt, and K. Eimhjellen. 1997. Bacterial degradation of emulsified crude oil and the effects of various surfactants. Can. J. Microbiol. 43, 17-22 https://doi.org/10.1139/m97-003
- Chang, Y.C. and C.C. Chou. 2002. Growth and production of cholesterol oxidase by alginate-immobilized cells of Rhodococcus equi No. 23. Biotechnol. Appl. Biochem. 35, 69-74 https://doi.org/10.1042/BA20010058
- Chen, K.C., J.J. Chen, and J.Y Houng. 2000. Improvement of nitrogen removal efficiency using immobilized microorganisms with oxidation-reduction potential monitoring. J. Ind. Microbiol. Biotechnol. 25, 229-234 https://doi.org/10.1038/sj.jim.7000061
- Del'Arco, J.P., and F.P. Franca. 2001. Influence of contamination levels on hydrocarbon biodegradation in sandy sediment. Environ. Poll. 110, 515-519
- Diaz, M.P., K.G. Boyd, S.J.W. Grigson, and J.G. Burgess. 2002. Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotech. Bioeng, 79, 145-153 https://doi.org/10.1002/bit.10318
- Gardea-Torresdey, J.L., J.L. Arenas, N.M.C. Francisco, K.J. Tiemann, and R. Webb. 1998. Ability of immobilized cyanobacteria to remove metal ions from solution and demonstration of the presence of metallothionein genes in various strains. J. Hazardous Substance Research 1(2), 1-8
- Huy, N.Q., S. Jin., K. Amada, M. Haruki, N.B. Huu, D.T Hang, D.TC. Ha, T. Imanaka, M. Morikawa, and S. Kanaya. 1999. Characterization of petroleum-degrading bacteria from oil-contaminated sites in Vietnam. J. Biosci. Bioeng, 88, 100-102 https://doi.org/10.1016/S1389-1723(99)80184-4
- Manohar, S., C.K. Kim, and TB. Karegoudar. 2001. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. Strain NGKI in polyurethane foam. Appl. Microbiol. Biotechnol. 55, 311-316 https://doi.org/10.1007/s002530000488
- Manohar, S. and TB. Karegoudar. 1998. Degradation of naphthalene by cells of Pseudomonas sp. strain NGK1 immobilized in alginate, agar and polyacrylamide. Appl. Microbiol. Biotechnol. 49, 785-792 https://doi.org/10.1007/s002530051247
- Ohta, T., J.C. Ogbonna, H. Tanaka, and M. Yajima. 1994. Development of a fermentation method using immobilized cells nnder nnsterile conditions. 2. Ethanol and L-lactic acid production without heat and filter sterilization. Appl. Microbiol. Biotech. 42, 246-260 https://doi.org/10.1007/BF00902724
- Radwan, S.S., R.H. Al-Hasan, S. Salamah, and S. Al-Dabbous. 2002. Bioremediation of oily sea water by bacteria immobilized in biofilms coating microalgae. Int. Biodet. Biodeg, 50, 55-59 https://doi.org/10.1016/S0964-8305(02)00067-7
- Salleh, A.B., F. Mohamad Ghazali, R.N.Z. Abd Rahman, and M. Basri. 2003. Bioremediation of petroleum hydrocarbon pollution. Ind. J Biotechnol. 2, 411-425
- Tope, A.M., K. Jamil, and T.R. Baggi. 1999. Transformation of 2,4,6-trinitrotoluene (TNT) by immobilized and resting cells of Arthrobacter sp. J. Hazardous Substance Research. 2(3), 1-8
- Wang, C.C., C.M. Lee, C.J. Lu, M.S. Chuang, and C.Z. Huang. 2000. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere. 41, 1873-1879 https://doi.org/10.1016/S0045-6535(00)00090-4