Effect of Mutations of Five Conserved Histidine Residues in the Catalytic Subunit of the cbb3 Cytochrome c Oxidase on its Function

  • Oh Jeong-Il (Department of Microbiology, Pusan National University)
  • Published : 2006.06.01

Abstract

The cbb3 cytochrome c oxidase has the dual function as a terminal oxidase and oxygen sensor in the photosynthetic bacterium, Rhodobacter sphaeroides. The cbb3 oxidase forms a signal transduction pathway together with the PrrBA two-component system that controls photosynthesis gene expression in response to changes in oxygen tension in the environment. Under aerobic conditions the cbb3 oxidase generates an inhibitory signal, which shifts the equilibrium of PrrB kinase/phosphatase activities towards the phosphatase mode. Photosynthesis genes are thereby turned off under aerobic conditions. The catalytic subunit (CcoN) of the R. sphaeroides cbb3 oxidase contains five histidine residues (H2l4, B233, H303, H320, and H444) that are conserved in all CcoN subunits of the cbb3 oxidase, but not in the catalytic subunits of other members of copper-heme superfamily oxidases. H214A mutation of CcoN affected neither catalytic activity nor sensory (signaling) function of the cbb3 oxidase, whereas H320A mutation led to almost complete loss of both catalytic activity and sensory function of the cbb3 oxidase. H233V and H444A mutations brought about the partial loss of catalytic activity and sensory function of the cbb3 oxidase. Interestingly, the H303A mutant form of the cbb3 oxidase retains the catalytic function as a cytochrome c oxidase as compared to the wild-type oxidase, while it is defective in signaling function as an oxygen sensor. H303 appears to be implicated in either signal sensing or generation of the inhibitory signal to the PrrBA two-component system.

Keywords

References

  1. Davis, J., T.J. Donohue, and S. Kaplan. 1988. Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. J. Bacteriol.. 170, 320-329 https://doi.org/10.1128/jb.170.1.320-329.1988
  2. Donohue, T.J., A.G. McEwan, S. Van Doren, A.R. Crofts, and S. Kaplan. 1988. Phenotypic and genetic characterization of cytochrome $c_2$ deficient mutants of Rhodobacter sphaeroides. Biochemistry. 27, 1918-1925 https://doi.org/10.1021/bi00406a018
  3. Eraso, J.M., and S. Kaplan. 1994. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J. Bacteriol. 176, 32-43 https://doi.org/10.1128/jb.176.1.32-43.1994
  4. Eraso, J.M., and S. Kaplan. 1995. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J. Bacteriol. 177, 2695-2706 https://doi.org/10.1128/jb.177.10.2695-2706.1995
  5. Eraso, J.M., and S. Kaplan. 1996. Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 178, 7037-7046 https://doi.org/10.1128/jb.178.24.7037-7046.1996
  6. Garcia-Horsman, J.A., B. Barquera, J. Rumbley, J. Ma, and R.B. Gennis. 1994. The superfamily of heme-copper respiratory oxidases. J. Bacteriol. 176, 5587-5600 https://doi.org/10.1128/jb.176.18.5587-5600.1994
  7. Iwata, S., C. Ostermeier, B. Ludwig, and H. Michel. 1995. Structure at 2.8 $\AA$ resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660-669 https://doi.org/10.1038/376660a0
  8. Jessee, J. 1986. New subcloning efficiency competent cells: >1 $\times 10^6$ transforrnants/$\mug$. Focus 8, 9
  9. Keen, N.T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70, 191-197 https://doi.org/10.1016/0378-1119(88)90117-5
  10. Kiley, P.J., and S. Kaplan. 1988. Molecular genetics of photosynthetic membrane biosynthesis III Rhodobacter sphaeroides. Microbiol. Rev. 52, 50-69
  11. Lauraeus, M., T. Haltia, M. Saraste, and M. Wikstrom. 1991. Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases. Eur. J. Biochem, 197, 699-705 https://doi.org/10.1111/j.1432-1033.1991.tb15961.x
  12. Mills, D.A., L. Florens, C. Hiser, J. Qian, and S. Ferguson-Miller. 2000. Where is 'outside' in cytochrome c oxidase and how and when do protons get there? Biochim. Biophys. Acta. 1458, 180-187 https://doi.org/10.1016/S0005-2728(00)00067-0
  13. Myllykallio, H., F. Drepper, P. Mathis, and F. Daldal. 1998. Membrane-anchored cytochrome $c_y$ mediated microsecond time range electron transfer from the cytochrome $bc_1$, complex to the reaction center in Rhodobacter capsulatus. Biochemistry. 37, 5501-5510 https://doi.org/10.1021/bi973123d
  14. O'Gara, J.P., J.M. Eraso, and S. Kaplan. 1998. A redoxresponsive pathway for aerobic regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 180, 4044-4050
  15. O'Gara, J.P., and S. Kaplan. 1997. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 179, 1951-1961 https://doi.org/10.1128/jb.179.6.1951-1961.1997
  16. Oelmuller, U., N. Kruger, A. Steinbuchel, and C.G. Friedrich. 1990. Isolation of procaryotic RNA and detection of specific mRNA with biotinylated probes. J. Microbiol. Methods. 11, 73-84 https://doi.org/10.1016/0167-7012(90)90050-G
  17. Oh, J.I., J.M. Eraso, and S. Kaplan. 2000. Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 182, 3081-3087 https://doi.org/10.1128/JB.182.11.3081-3087.2000
  18. Oh, J.I., and S. Kaplan. 1999. The ebb, terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38, 2688-2696 https://doi.org/10.1021/bi9825100
  19. Oh, J.I., and S. Kaplan. 2000. Redox signaling: globalization of gene expression. EMBO J. 19, 4237-4247 https://doi.org/10.1093/emboj/19.16.4237
  20. Oh, J.I., and S. Kaplan. 2001. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39, 1116-1123 https://doi.org/10.1111/j.1365-2958.2001.02299.x
  21. Oh, J.I., and S. Kaplan. 2002. Oxygen adaptation: The role of the CcoQ subunit of the $cbb_3$, cytochrome c oxidase of Rhodobacter sphaeroides 2.4.1. J. Biol. Chem. 277, 16220- 16228 https://doi.org/10.1074/jbc.M200198200
  22. Oh, J.I., I.J. Ko, and S. Kaplan. 2001. The default state of the membrane-localized histidine kinase PrrB of Rhodobacter sphaeroides 2.4.1 is in the kinase-positive mode. J. Bacteriol. 183, 6807-6814 https://doi.org/10.1128/JB.183.23.6807-6814.2001
  23. Oh, J.I., I.J. Ko, and S. Kaplan. 2004. Reconstitution of the Rhodobacter sphaeroides $cbb_3$-PrrBA signal transduction pathway in vitro. Biochemistry 43, 7915-7923 https://doi.org/10.1021/bi0496440
  24. Puustinen, A., M. Finel, T. Haltia, R.B. Gennis, and M. Wikstrom. 1991. Properties of the two terminal oxidases of Escherichia coli. Biochemistry. 30, 3936-3942 https://doi.org/10.1021/bi00230a019
  25. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  26. Simon, R., U. Priefer, and A. Puhler. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technol. 1, 784-791 https://doi.org/10.1038/nbt1183-784
  27. Swem, L.R., X. Gong, C.A. Yu, and C.E. Bauer. 2006. Identification of a ubiquinone binding site that affects autophosphorylation of the sensor kinase RegB. J. Biol. Chem. In press
  28. Toledo-Cuevas, M., B. Barquera, R.B. Gennis, M. Wikstrom, and J.A. Garcia-Horsman. 1998. The $cbb_3$-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase. Biochim. Biophys. Acta 1365, 421-434 https://doi.org/10.1016/S0005-2728(98)00095-4
  29. van Neil, C.B. 1944. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacterial Rev. 8, 1-118
  30. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119 https://doi.org/10.1016/0378-1119(85)90120-9
  31. Zaslavsky, D., and R.B. Gennis. 2000. Proton pumping by cytochrome oxidase: progress, problems and postulates. Biochim. Biophys. Acta. 1458, 164-179 https://doi.org/10.1016/S0005-2728(00)00066-9
  32. Zeilstra-Ryalls, J.H., and S. Kaplan. 1996. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state. J. Bacteriol. 178, 985-993 https://doi.org/10.1128/jb.178.4.985-993.1996
  33. Zufferey, R., E. Arslan, L. Thony-Meyer, and H. Hennecke. 1998. How replacements of the 12 conserved histidines of subnnit I affect assembly, cofactor binding, and enzymatic activity of the Bradyrhizobium japonicum $cbb_3$-type oxidase. J. Biol. Chem. 273, 6452-6459 https://doi.org/10.1074/jbc.273.11.6452
  34. Zufferey, R., O. Preisig, H. Hennecke, and L. Thony-Meyer. 1996. Assembly and function of the cytochrome $cbb_3$, oxidase subunits in Bradyrhizobium japonicum. J. Biol. Chem. 271, 9114-9119 https://doi.org/10.1074/jbc.271.15.9114