Cross-resistance Between Rifampicin and Rifabutin and Its Relationship with rpoB Gene Mutations in Clinically Isolated MDR-TB Strains

다제내성 결핵 균주에서 리팜핀과 리파부틴간의 교차내성률 및 rpoB 유전자 돌연변이와의 연관성

  • Received : 2006.01.04
  • Accepted : 2006.02.03
  • Published : 2006.02.28

Abstract

Background : Despite the emerging danger of MDR-TB to human beings, there have only been a limited number of drugs developed to treat MDR-TB since 1970. This study investigated the cross-resistance rate between rifampicin (RFP) and rifabutin (RBU) in order to determine the efficacy of rifabutin in treating MDR-TB. In addition, the results of rifabutin were correlated with the rpoB mutations, which are believed to be markers for MDR-TB and RFP resistance. Methods : The MICs of RBU were tested against 126 clinical isolates of MDR-TB submitted to the clinical laboratory of National Masan TB Hospital in 2004. Five different concentrations ($10-160{\mu}g/ml$) were used for the MICs. The detection of the rpoB mutations was performed using a RFP resistance detection kit with a line probe assay(LiPA), which contains the oligonucleotide probes for 5 wide type and 3 specific mutations (513CCA, 516GTC, and 531TTG) The rpoB mutation was determined by direct sequencing. Results : The rate of cross-resistance between RFP and RBU was 70.5%(74/105) at $20{\mu}g/ml$ RBU(ed note: How much RFP?) Most mutations (86.3%) occurred in the 524~534 codons. The His526Gln, His526Leu, Leu533Pro, Gln513Glu, and Leu511Pro mutations(Ed note: Is this correct?) were associated with the susceptibilty to RBU. Conclusion : Based on the cross-resistance rate between RFP and RBU, RBU may be used effectively in some MDR-TB patients. Therefore, a conventional drug susceptibility test for RBU and a determination of the critical concentration are needed. However, rpoB gene mutation test may be have limited clinical applications in detecting RBU resistance.

목 적 : RFP과 RBU 사이의 교차 내성률은 다양하게 보고되고 있으며 rpoB 돌연변이가 이에 관여하는 것으로 알려져 있다. 본 연구에서는 본원에서 동정되어 보관중인 다제내성 결핵균주를 대상으로 하여 두 약물간의 교차 내성률 및 rpoB 돌연변이와의 연관성을 조사함으로써 다제내성 결핵의 치료에 있어 RBU의 효용성에 대하여 알아보고자 하였다. 방 법 : 2004년 한 해 동안 본원 검사실에서 다제내성 결핵균으로 동정되어 보관중인 130균주를 대상으로 하였다. RFP과 RBU의 내성검사는 L-J 배지를 이용한 절대농도법으로 시행하였으며 추가로 다음과 같은 다섯 가지의 농도를 이용하여 RBU의 MICs를 조사하였다; 10, 20, 40, 60, $120{\mu}g/ml$. 내성기준농도는 RFP의 경우 $40{\mu}g/ml$, RBU의 경우 $20{\mu}g/ml$로 하여 내성유무를 판정하였다. rpoB 돌연변이는 LiPA법을 이용한 REBA $MTB-Rifa^{(R)}$검사로 조사하였으며 염기서열분석을 의뢰하여 그 결과를 검증하고 구체적인 개별 돌연변이양상을 알아보았다. 결 과 : RFP은 모두 내성으로 확인되었고 RBU의 $MIC_{50}$$80{\mu}g/ml$, $MIC_{90}$${\geq}160{\mu}g/ml$였으며 RFP과 RBU간의 교차내성률은 70.5%였다. REBA $MTB-Rifa^{(R)}$검사 결과 rpoB 돌연변이는 대부분 코돈 524-534 사이에서 발생하였고 검사를 시행한 100균주 가운데 98개의 균주에서 돌연변이가 확인되어 RFP내성을 진단할 수 있는 진단율은 약물감수성검사와 비교하여 98%의 일치율을 보였다. 염기서열분석결과 코돈 531과 513의 돌연변이는 돌연변이의 양상에 관계없이 항상 RBU내성과 관련되어 있었던 반면 코돈 526의 돌연변이는 돌연변이의 양상에 따라 내성 혹은 감성과 관련되어 있었다. 가장 흔한 돌연변이는 Ser531Leu로 전체의 45.5%를 차지하였다. 약물감수성검사에 비추어 His526Gln, His526Leu, Leu533Pro, Gln513Glu, Leu511Pro가 감성 돌연변이로 판단되었다. 결 론 : 두 약제간의 내성률을 고려하여 볼 때 RBU은 일부 다제내성 결핵의 치료에 있어서 효과가 있겠다. 우선 RBU에 대한 전통적인 약물감수성 검사를 도입하여 적절한 내성기준농도를 확립하는 노력이 필요하며 현재까지 rpoB 유전자 검사법은 임상에 적용하기에 한계가 있는 것으로 사료된다.

Keywords

References

  1. Woodley CL, Kilburn JO. In vitro susceptibility of Mycobacterium avium complex and Mycobacterium tuberculosis strains to a spiro-piperidyl rifamycin. Am Rev Respir Dis 1982;126:586-7
  2. O'Brien RJ, Lyle MA, Snider DE Jr. Rifabutin (ansamycin LM 427): a new rifamycin-S derivative for the treatment of mycobacterial disease. Rev Infect Dis 1987;9:519-30.s https://doi.org/10.1093/clinids/9.3.519
  3. O'Brien RJ, Geiter LJ, Lyle MA. Rifabutin (ansamycin LM 427) for the treatment of pulmonary Mycobacterium avium complex. Am Rev Respir Dis 1990;141:821-6 https://doi.org/10.1164/ajrccm/141.4_Pt_1.821
  4. Ji B, Truffot-Pernot C, Lacroix C, Raviglione MC, O'Brien RJ, Olliaro P, et al. Effectiveness of rifampin, rifabutin, and rifapentine for preventive therapy of tuberculosis in mice. Am Rev Respir Dis 1993;148:1541-6 https://doi.org/10.1164/ajrccm/148.6_Pt_1.1541
  5. Chien HP, Yu MC, Ong TF, Lin TP, Luh KT. In vitro activity of rifabutin and rifampin against clinical is olates of Mycobacterium tuberculosis in Taiwan. J Formos Med Assoc 2000;99:408-11
  6. Uzun M, Erturan Z, Ang O. Investigation of cross-resistance between rifampin and rifabutin in Mycobacterium tuberculosis complex strains. Int J Tuberc Lung Dis 2002;6:164-5
  7. Saribas Z, Kocagoz T, Alp A, Gunalp A. Rapid detection of rifampin resistance in Mycobacterium tuberculosis isolates by heteroduplex analysis and determination of rifamycin cross-resistance in rifampin-resistant isolates. J Clin Microbiol 2003;41:816-8 https://doi.org/10.1128/JCM.41.2.816-818.2003
  8. Senol G, Erbaycu A, Ozsoz A. Incidence of cross resistance between rifampicin and rifabutin in Mycobacterium tuberculosis strains in Izmir, Turkey. J Chemother 2005;17:380-4 https://doi.org/10.1179/joc.2005.17.4.380
  9. Shim TS, Kim JS, Park MS, Lim CM, Lee SD, Koh YS, et al. Rifabutin suceptibility and rpoB gene mutations in multi-drug resistant Mycobacterium tuberculosis. Tuberc Respir Dis 2000;48:853-69 https://doi.org/10.4046/trd.2000.48.6.853
  10. Lew WJ, Park YK, Kim HJ, Chang CH, Bai GH, Kim SK. The proportion of rifabutin-susceptible strains among rifampicin-resistant isolates and its specific rpoB mutations. Tuberc Respir Dis 2005;59:257-65 https://doi.org/10.4046/trd.2005.59.3.257
  11. Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y, et al. Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J Antimicrob Chemother 1998:42;621-8 https://doi.org/10.1093/jac/42.5.621
  12. Williams DL, Spring L, Collins L, Miller LP, Heifets LB, Gangaharam PRJ, et al. Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998:42;1853-7
  13. Cavusoglu C, Karaca-Derici Y, Bilgic A. In-vitro activity of rifabutin against rifampicin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Clin Microbiol Infection 2004;10:662-5 https://doi.org/10.1111/j.1469-0691.2004.00917.x
  14. Telenti A. Genetics of drug resistance in tuberculosis. Clin Chest Med 1997;18:55-64 https://doi.org/10.1016/S0272-5231(05)70355-5
  15. de Beenhouwer H, Lhiang Z, Jannes G, Mijs W, Machtelinchx L, Rossau R, et al. Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tubercle Lung Dis 1995;76:425-30 https://doi.org/10.1016/0962-8479(95)90009-8
  16. Telenti A, Imboden P, Marchesi F, Schmidheini T, Bodmer T. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother 1993;37:2054-8 https://doi.org/10.1128/AAC.37.10.2054
  17. Canetti G, Fox W, Khomenko A, Mahler H, Menon NK, Mitchison DA, et al. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ 1969;41:21-43
  18. Bai GH. Anti-tuberculosis drug resistance in Korea. CDMR 2005;16:101-7
  19. NCCLS. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; Approved standard