Right Ventricle Ejection Fraction Contributes Severity of Dyspnea in Chronic Obstructive Pulmonary Disease (COPD)

만성폐쇄성폐질환 환자의 호흡곤란 평가에서 우심실 박출계수의 의의

  • Lee, Jung Eun (Department of Medicine, Keimyung University School of Medicine) ;
  • Min, Bo Ram (Department of Medicine, Keimyung University School of Medicine) ;
  • Park, Jae Seok (Department of Medicine, Keimyung University School of Medicine) ;
  • Park, Hun Pyo (Department of Medicine, Keimyung University School of Medicine) ;
  • Jun, Mi Jung (Department of Preventive Medicine, Keimyung University School of Medicine) ;
  • Won, Kyung Sook (Department of Nuclear Medicine, Keimyung University School of Medicine) ;
  • Choi, Won Il (Department of Medicine, Keimyung University School of Medicine)
  • 이정은 (계명대학교 의과대학 내과학교실) ;
  • 민보람 (계명대학교 의과대학 내과학교실) ;
  • 박재석 (계명대학교 의과대학 내과학교실) ;
  • 박훈표 (계명대학교 의과대학 내과학교실) ;
  • 전미정 (계명대학교 의과대학 예방의학교실) ;
  • 원경숙 (계명대학교 의과대학 핵의학교실) ;
  • 최원일 (계명대학교 의과대학 내과학교실)
  • Received : 2006.04.18
  • Published : 2006.06.30

Abstract

Background: Patients with COPD generally complain of very different degrees of dyspnea regardless of their pulmonary function. The study, we assessed the right ventricular ejection fraction in relation to dyspnea in COPD patient. Methods: The pulmonary function including the diffusion capacity was measured. The right ventricle ejection fraction (RVEF) was measured using a first-pass radionuclide scan by multigated acquisition (MUGA). Forty patients with chronic obstructive pulmonary disease (COPD) were stratified for dyspnea according to the Medical Research Council (MRC) scale. Moderate dyspnea and severe dyspnea is defined as MRC 2/3 (n = 16) and MRC 4/5 (n = 24) respectively. Results: The baseline pulmonary function tests including DLCO and the resting arterial blood gas were similar in the moderate and severe dyspnea group, with the exception of the residual volume (% predicted) (moderate $160{\pm}27$, severe $210{\pm}87$, p < 0.03). The right ventricle ejection fraction was significantly (p < 0.001) lower in the severe dyspnea group ($25{\pm}8$) than in the moderate group ($35{\pm}6$). The independent factor assessed by multiple logistic regression revealed only the severity of dyspnea to be significantly associated with RVEF (p < 0.02). Conclusion: This study showed that the right ventricle ejection fraction would contributes to severity of dyspnea in patients with a similar pulmonary function.

배 경: 만성폐쇄성폐질환 환자의 호흡곤란은 일반적으로 폐활량에 반비례하나 유사한 폐기능에서도 서로 다른 호흡곤란을 호소한다. 본 연구는 만성폐쇄성폐질환 환자에서 우심실박출계수와 호흡곤란의 정도와 연관관계가 있는지를 알아보고자 한다. 방 법: 호흡곤란의 정도는 Medical Research Council (MRC) 호흡곤란척도로 분석하였고, MRC 4/5도인 중증군 24명과, MRC 2/3도인 중등증군 16명을 비교 분석하였다. 심전도게이트 일회통과법을 이용한 방사성동위원소 심조영술을 이용하여 우심실 박출계수를 구했으며, 안정시 동맥가스분석 및 폐기능검사를 시행하였다. 결 과: 기저 폐기능에서 잔기량의 예측치 평균이 (%) 중증군에서($210{\pm}87$) 중등증군($160{\pm}27$)에 비해 유의하게 증가되었으나(P < 0.03), 폐활량 및 확산계수 등에서는 유의한 차이가 관찰되지 않았다. 우심실 박출계수(%)는 중증군에서($25{\pm}8$) 중등증군($35{\pm}6$)에 비해 유의하게 감소되었으나(P < 0.001), 동맥혈가스는 두 군 사이에 유의한 차이가 관찰되지 않았다. 다중회귀분석을 통해 우심실 박출계수가 독립적으로 호흡곤란에 영향을 미치는 인자로 밝혀졌다. 결 론: 만성폐쇄성폐질환에서 우심실 박출계수가 호흡곤란의 정도에 영향을 미치는 것으로 보인다.

Keywords

References

  1. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, et al.The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004;350:1005-12 https://doi.org/10.1056/NEJMoa021322
  2. Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest 2002;121:1434-40 https://doi.org/10.1378/chest.121.5.1434
  3. Mahler DA, Harver A. A factor analysis of dyspnea ratings, respiratory muscle strength, and lung function in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1992;145:467-70 https://doi.org/10.1164/ajrccm/145.2_Pt_1.467
  4. Wegner RE, Jorres RA, Kirsten DK, Magnussen H. Factor analysis of exercise of exercise capacity, dyspnoea ratings and lung function in patients with severe COPD. Eur Respir J 1994;7:725-9 https://doi.org/10.1183/09031936.94.07040725
  5. Dodd DS, Brancatisano T, Engel LA. Chest wall mechanics during exercise in patients with severe chronic air-flow obstruction. Am Rev Respir Dis 1984;129:33-8
  6. Hamilton AL, Killian KJ, Summers E, Jones NL. Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders. Am J Respir Crit Care Med 1995;152:2021-31 https://doi.org/10.1164/ajrccm.152.6.8520771
  7. Montes de Oca M, Rassulo J, Celli BR. Respiratory muscle and cardiopulmonary function during exercise in very severe COPD. Am J Respir Crit Care Med 1996;154:1284-9 https://doi.org/10.1164/ajrccm.154.5.8912737
  8. Marin JM, Montes de Oca M, Rassulo J, Celli BR. Ventilatory drive at rest and perception of exertional dyspnea in severe COPD. Chest 1999;115:1293-300 https://doi.org/10.1378/chest.115.5.1293
  9. Belman MJ, Botnick WC, Shin JW. Inhaledbronchodilators reduce dynamic hyperinflation during exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996;153:967-75 https://doi.org/10.1164/ajrccm.153.3.8630581
  10. O'Donnell DE, Webb KA. Exertional breathlessness in patients with chronic airflow limitation: the role of lung hyperinflation. Am Rev Respir Dis 1993;148:1351-7 https://doi.org/10.1164/ajrccm/148.5.1351
  11. Burrows B, Kettel LJ, Niden AH, Rabinowitz M, Diener CF. Patterns of cardiovascular dysfunction in chronic obstructive lung disease. N Engl J Med 1972;286:912-8 https://doi.org/10.1056/NEJM197204272861703
  12. Brent BN, Berger HJ, Matthay RA, Mahler D, Pytlik L, Zaret BL. Physiologic correlates of right ventricular ejection fraction in chronic obstructive pulmonary disease: a combined radionuclide and hemodynamic study. Am J Cardiol 1982;50:255-62 https://doi.org/10.1016/0002-9149(82)90174-6
  13. Burger W, Allroggen H, Kober G. Right ventricular volumes determined by computerized thermodilution in ischaemic heart disease: effect of exercise and nitroglycerin. Int J Cardiol 1991;33:33-41 https://doi.org/10.1016/0167-5273(91)90149-J
  14. Dhainaut JF, Brunet F, Monsallier JF, Villemant D, Devaux JY, Konno M, et al. Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit Care Med 1987;15:148-52 https://doi.org/10.1097/00003246-198702000-00014
  15. Park HP, Park SH, Lee SW, Seo YW, Lee JE, Seo CK, et al. Change of lung volumes in chronic obstructive pulmonary disease patients with improvement of airflow limitation after treatment. Tuberc Respir Dis 2004;57:143-7 https://doi.org/10.4046/trd.2004.57.2.143
  16. Quanjer PH, Tammeling GF, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows: official statement of the European Respiratory Society. Eur Respir J 1993;6 (Suppl 16):5-40 https://doi.org/10.1183/09041950.005s1693
  17. Seo YW, Choi WI, Lee JE, Park HP, Ko SM, Won KS, et al. Importance of carbon monoxide transfer coefficient (KCO) interpretation in patients with airflow limitation. Tuberc Respir Dis 2005;59:374-9 https://doi.org/10.4046/trd.2005.59.4.374
  18. Sechtem U, Pflugfelder PW, Gould RG, Cassidy MM, Higgins CB. Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology 1987;163:697-702 https://doi.org/10.1148/radiology.163.3.3575717
  19. Brynjolf I, Kelbaek H, Munck O, Godtfredsen J, Larsen S, Eriksen J. Right and left ventricular ejection fraction and left ventricular volume changes at rest and during exercise in normal subjects. Eur Heart J 1984;5:756-61 https://doi.org/10.1093/oxfordjournals.eurheartj.a061738
  20. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Haery C, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 2004;32:691-9 https://doi.org/10.1097/01.CCM.0000114996.68110.C9
  21. Berger HJ, Matthay RA, Loke J, Marshall RC, Gottschalk A, Zaret BL. Assessment of cardiac performance with quantitative radionuclide angiocardiography: right ventricular ejection fraction with reference to findings in chronic obstructive pulmonary disease. Am J Cardiol 1978;41:897-905 https://doi.org/10.1016/0002-9149(78)90731-2
  22. Ellis JH Jr, Kirch D, Steele PP. Right ventricular ejection fraction in severe chronic airway obstruction. Chest 1977;71:281-2 https://doi.org/10.1378/chest.71.2_Supplement.281
  23. Mineo TC, Pompeo E, Rogliani P, Dauri M, Turani F, Bollero P, et al. Effect of lung volume reduction surgery for severe emphysema on right ventricular function. Am J Respir Crit Care Med 2002;165:489-94 https://doi.org/10.1164/ajrccm.165.4.2108129
  24. Chaouat A, Bugnet AS, Kadaoui N, Schott R, Enache I, Ducolone A, et al. Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;172:189-94 https://doi.org/10.1164/rccm.200401-006OC
  25. Kessler R, Faller M, Weitzenblum E, Chaouat A, Aykut A, Ducolone A, et al.'Natural history' of pulmonary hypertension in a series of 131 patients with chronic obstructive lung disease. Am J Respir Crit Care Med 2001;164:219-24 https://doi.org/10.1164/ajrccm.164.2.2006129
  26. Arcasoy SM, Christie JD, Ferrari VA, Sutton MS, Zisman DA, Blumenthal NP, et al.Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med 2003;167:735-40 https://doi.org/10.1164/rccm.200210-1130OC
  27. Keller CA, Ohar J, Ruppel G, Wittry MD, Goodgold HM. Right ventricular function in patients with severe COPD evaluated for lung transplantation. Lung Transplant Group. Chest 1995;107:1510-6 https://doi.org/10.1378/chest.107.6.1510
  28. Mahler DA, Brent BN, Loke J, Zaret BL, Matthay RA. Right ventricular performance and central circulatory hemodynamics during upright exercise in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1984;130:722-9
  29. Matthay RA, Berger HJ, Davies RA, Loke J, Mahler DA, Gottschalk A, et al. Right and left ventricular exercise performance in chronic obstructive pulmonary disease: radionuclide assessment. Ann Intern Med 1980;93:234-9 https://doi.org/10.7326/0003-4819-93-2-234
  30. Olvey SK, Reduto LA, Stevens PM, Deaton WJ, Miller RR. First pass radionuclide assessment of right and left ventricular ejection fraction in chronic pulmonary disease: effect of oxygen upon exercise response. Chest 1980;78:4-9 https://doi.org/10.1378/chest.78.1.4
  31. O'Donnell DE, Sanii R, Anthonisen NR, Younes M. Effect of dynamic airway compression on breathing pattern and respiratory sensation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 1987;135:912-8 https://doi.org/10.1164/arrd.1987.135.4.912
  32. Manning HL, Schwartzstein RM. Pathophysiology of dyspnea. N Engl J Med 1995;333:1547-53 https://doi.org/10.1056/NEJM199512073332307
  33. Harris P, Segel N, Green I, Housley E. The influence of the airways resistance and alveolar pressure on the pulmonary vascular resistance in chronic bronhcitis. Cardiovasc Res 1968;2:84-92 https://doi.org/10.1093/cvr/2.1.84
  34. Dinh-Xuan AT, Higenbottam TW, Clelland CA, Pepke-Zaba J, Cremona G, Butt AY, et al. Impairment of endothelium-dependent pulmonaryartery relaxation in chronic obstructive lung disease. N Engl J Med 1991;324:1539-47 https://doi.org/10.1056/NEJM199105303242203
  35. Peinado VI, Barbera JA, Ramirez J, Gomez FP, Roca J, Jover L, et al. Endothelial dysfunction in pulmonary arteries of patients with mild COPD. Am J Physiol 1998;274:L908-13
  36. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 1995;333:214-21 https://doi.org/10.1056/NEJM199507273330403
  37. Barbera JA, Peinado VI, Santos S, Ramirez J, Roca J, Rodriguez-Roisin R. Reduced expression of endothelial nitric oxide synthase in pulmonary arteries of smokers. Am J Respir Crit Care Med 2001;164:709-13 https://doi.org/10.1164/ajrccm.164.4.2101023