DOI QR코드

DOI QR Code

Effects of Aeration on Bio-hydrogen (Bio-H2) Production in the Anaerobic Digestion

혐기성 소화시 aeration이 수소생성에 미치는 영향

  • 이명주 (경희대학교 대학원 환경공학 전공) ;
  • 장현섭 (경희대학교 대학원 환경공학 전공) ;
  • 황선진 (경희대학교 환경응용화학대학 환경공학전공. 환경연구센터) ;
  • 정연구 (국립금오공과대학교 토목환경공학부)
  • Received : 2006.08.18
  • Accepted : 2006.08.19
  • Published : 2006.11.29

Abstract

This research investigated the effect of aeration pretreatment for anaerobic seed sludge on hydrogen production. Aeration time for anaerobic sludge was maintained at 0, 1, 3, 6, 12, and 24 hours in batch tests. Two continuous anaerobic reactors (aerated and non-aerated) were also operated. All experiments were conducted at $35^{\circ}C$ using mineral salts-glucose (20 g/l) medium. Methane production decreased with the increase in aeration time. Aeration for 6 hours was determined as an optimum from the amount of hydrogen produced. Hydrogen was steadily produced in the continuous reactor seeded with aerated sludge while no methane production was observed. However, small amount of hydrogen was produced in the non-aerated reactor for short period of time from the start even though short HRT (2 days) and low pH (5.5) were maintained.

본 연구에서는 혐기성 소화에서 aeration이 수소생성에 미치는 영향에 대해 살펴보았다. 혐기성 소화슬러지를 0, 1, 3, 6, 12, 24 시간 동안 aeration 실시 후 glucose(20 g/L)를 기질로 이용하여 batch test를 실시하였다. Aeration 시간이 길어질수록 메탄가스가 감소하고, 수소가스가 증가하였으며, 6시간 동안 aeration을 실시한 반응조에서 가장 높은 수소 생성율(570 ml/L)을 나타내었다. 연속운전의 경우 aerated reactor는 메탄가스의 생성 없이 수소가 지속적으로 발생하였으며, non-aerated reactor의 경우 낮은 pH와 짧은 HRT만으로는 메탄 생성균의 활성을 완전히 저해할 수 없었다. 그러나 미생물관점에서의 보다 명확한 규명을 위해 향후 연구가 추가적으로 진행되어야 하며, 현장 적용성을 고려한 aeration 처리의 최적조건 도출도 이루어져야 할 것이다.

Keywords

References

  1. Chen, C.C. and Lin, C.Y. (2001) Start-up of anaerobic hydrogen producting reactors seeded with sewage sludge, Acta. Biotechnol., 21, pp. 371-379 https://doi.org/10.1002/1521-3846(200111)21:4<371::AID-ABIO371>3.0.CO;2-Z
  2. Cohen, A., Zoetemeyer, R.J., VanDeursen, A., and Ande, J.G. (1979) Anaerobic digestion of glucose with separated acid production and methane formation. Wat. Res. 13, pp. 571-580 https://doi.org/10.1016/0043-1354(79)90003-4
  3. Dinopoulou, G., Rudd, T., and Lester, J.N. (1988) The influence of operational parameters on reactor performance, Biotechnol Bioeng, 31, pp. 958-968 https://doi.org/10.1002/bit.260310908
  4. Fang, H.H.P. and Liu, H. (2002) Effect of pH on hydrogen production from glucose by a mixed culture, Bioresource Technology, 82, pp. 87-93 https://doi.org/10.1016/S0960-8524(01)00110-9
  5. Fang, H.H.P., Chenlin, L., and Tong, Z. (2006) Acidophilic biohydrogen production from rice slurry, Int. J Hydrogen Energy, in Press, 31, pp. 683-692 https://doi.org/10.1016/j.ijhydene.2005.07.005
  6. Ghosh, S. and Pohald, F.G. (1974) Kinetics of substrate assimilation and product formation in anaerobic digestion. J Wat. Pollut. Control Fed, 46, pp. 748-759
  7. Han, S.K. and Shin, H.S. (2004) Biohydrogen priduction by anaerobic fermentation of food waste, Int. J Hydrogen Energy, 29, pp. 569-577. https://doi.org/10.1016/j.ijhydene.2003.09.001
  8. Kato, M.T., Field, J.A., and Lettinga, G. (1993) High tolerance of methanogens in Granular Sludge to Oxygen, Biotechnology and Bioengineering, 42, pp. 1360-1366 https://doi.org/10.1002/bit.260421113
  9. Lay, J.J., Lee, Y.J., and Noike, T. (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid. Waste Water Res., 33, pp. 2579-2586 https://doi.org/10.1016/S0043-1354(98)00483-7
  10. Levin, D.B., Pitt, L., and Love, M. (2004) Biohydrogen production:prospects and lomitation to practical application. Inr: J. Hydrogen Energy, 29, pp. 173-185 https://doi.org/10.1016/S0360-3199(03)00094-6
  11. Lin, C.Y. and Chang, R.C. (1999) Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Bioechmol.,74, pp. 498-500 https://doi.org/10.1002/(SICI)1097-4660(199906)74:6<498::AID-JCTB67>3.0.CO;2-D
  12. Mizuno, O., Dinsdale, R., Hawkes, F.R., Hawkes, D.L., and Noike, T., Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresource Technol., 73, pp. 59-65 https://doi.org/10.1016/S0960-8524(99)00130-3
  13. Noike, T., Endo, G., Chang, J.E., Yaguchi J.I, and Matsumoto, J.I. (1985) Characteristics of carbohydrate degradation and the ratelimiting step in anaerobic digestion, Biotechnol, Bioengng, 27, pp. 1482-1489 https://doi.org/10.1002/bit.260271013
  14. Noike, T., Takabatake, H., Mizuno, O., and Ohba, M. (2002) Inhibition of hydrogen fermentation of organic waste by lactic acid bacteria. Int. J. Hydrogen Energy, 27, pp. 1367-1371 https://doi.org/10.1016/S0360-3199(02)00120-9
  15. Rifkin, J. (2002) The creation of the worldwide energy web and the redistribution of the power on earth, The hydrogen economy; Penguim Putam, New work, NY, pp. 15-17
  16. Shen, C.F. and Guiot, S.R. (1996) Long term impact of dissolved O2 on the activity of anaerobic digestion, Biotech. Bioeng. 49, pp.611-620 https://doi.org/10.1002/(SICI)1097-0290(19960320)49:6<611::AID-BIT2>3.3.CO;2-Z
  17. Tauchi, F., Mizukami, N., Saito-Taki, T., and Hesegawa, K. (1995) Can. J Microbiol. 41, pp. 536-540 https://doi.org/10.1139/m95-071
  18. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y. (2001) Microbial community in anaerobic hydrogen-producing micro flora enriched from sludge compost Appl. Microbiol' Biotechnol., 57, pp. 555-562 https://doi.org/10.1007/s002530100806
  19. Yang, H., Shao, P., Lu, T., Shen, J, Wang, D., Xu, Z., and Yuan X. (2006) Continous bio-hydrogen production from ciritic acid wastewater via facultative anaerobic bacteria, Int. J. Hydrogen Energy, 31, pp. 1306-1313 https://doi.org/10.1016/j.ijhydene.2005.11.018
  20. Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S., and Takasaki, Y (1995) Characteristics of hydrogen production by aciduric enterobacter aerogenes strain HO-39. J. Ferment. Bioeng., 80, pp.571-574 https://doi.org/10.1016/0922-338X(96)87733-6
  21. Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S., and Takasaki, Y. (1998) $H_2$ production from starch by a mixed culture of clostridium butyricum and Enterobacter aerogenes, Biotechnology Letters, 20, pp. 143-147 https://doi.org/10.1023/A:1005372323248
  22. Zinder, S.H., Anguish, T., and Cardwell, S.C. (1984) Effect of temperature on methanogenesis in a thermophilic anaerobic digester, Applied Environ. Microbiol., 47, pp. 808-813