DOI QR코드

DOI QR Code

사행수로의 흐름구조 및 난류특성

Flow Structure and Turbulence Characteristics in Meandering Channel

  • 서일원 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 이규환 (현대중공업) ;
  • 백경오 (한국건설기술연구원)
  • 투고 : 2006.01.12
  • 심사 : 2006.06.22
  • 발행 : 2006.09.30

초록

본 연구에서는 사행수로에서 주 흐름과 이차류의 특성을 정량적으로 분석하고자 중심각이 $150^{\circ}$이고 사행도 1.52인 S자형 사행수로에서 실험을 수행하였다. 평균수심과 유량을 달리하여 다양한 실험 조건 하에서 수행한 실험을 통해 다중 만곡부를 갖는 사행수로에서 이차류의 공간적 변화양상을 관찰하였다. 실험결과, 주 흐름은 실험조건에 관계없이 직선구간에서 좌우 대칭적인 유속분포를 보였고, 만곡부에서는 내안쪽에 최대유속이 발생하고 외안쪽에 최소유속이 발생하는 현상을 발견 할 수 있었다. 이렇게 주 흐름이 최단노선을 따라 발생하는 현상은 기존 연구자들의 결과와 일치하는 것이다. 이차류의 거동은 첫번째 만곡부보다 두 번째 만곡부에서 더욱 활발하게 발달하고 외안 회전류가 뚜렷히 나타남을 발견하였다. 이차류의 강도는 직선구간에서는 낮게 나타나고 만곡부에서는 증가하는 주기적인 현상을 보였으며, 만곡부의 이차류 강도가 직선구간보다 2~3배 크게 나타났다. 또한, 두 번째 만곡부에서 이차류 강도의 최대값이 발생했다. 주 흐름방향의 난류 강도와 Reynolds 전단응력을 분석한 결과, 주 흐름 난류 강도는 주 흐름의 유속편차가 클수록 증가하는 것으로 나타났고 Reynolds 전단응력은 주 흐름방향 유속의 편차가 크게 벌어지는 동시에 이차류가 활발히 생성되는 지점에서 크게 나타나는 경향을 보였다.

In order to investigate characteristics of the primary flow and the secondary currents in meandering channels, the laboratory experiments were conducted in S-curved channels with angle of bend, $150^{\circ}$, and sinuosity of 1.52. The experimental conditions was decided varying average depth and velocity. Under these experimental conditions, spatial variations of the secondary currents in multiple bends were observed. The experimental results revealed that the distribution of primary flow in straight section is symmetric without respect to the experimental condition and the maximum velocity line of the primary flow occurs along the shortest path in experimental channel, supporting the result of previous works. The secondary currents in second bend became more developed than those in first bend. Particularly, the outer bank cell developed distinctively and the secondary current intensity was low at the straight section and high at the bends, periodically. Also, the secondary current intensity at the bends was as twice to three times as that at the straight section, and has its maximum value at the second bend. The turbulent flow characteristics of meandering channel was investigated with turbulent intensity of the primary flow and Reynolds shear stress. It was observed that the turbulent intensity is increasing when the velocity deviation of the primary flow is large whereas Reynolds shear stress increases when both the velocity deviation of the primary flow and the secondary current are large.

키워드

참고문헌

  1. 김지영(2005) LES를 이용한 복단면 사행수로에서의 흐름특성 분석, 석사학위논문, 서울대학교
  2. 서울대학교(2004) 21세기 프론티어 연구개발사업 , 수자원의 지속적 확보기술 개발사업, 하천흐름 및 하상변동 해석기술 개발, 과학기술부
  3. 서일원, 성기훈, 백경오, 정성진(2004) 사행수로에서 흐름특성에 관한 실험적 연구, 한국수자원학회논문집, 한국수자원학회, 제 37권 제7호, pp. 527-540
  4. 이두한, 이찬주, 김명환(2005) 복단변 사행 하도의 흐름특성에 대한 실험 연구, 대한토목학회논문집, 대한토목학회, 제25권 제 3B호, pp. 197-206
  5. Almquist, C.W. and Holley, E.R. (1985) Transverse mixing in meandering laboratory channels with rectangular and naturally varying cross sections. Technical Report CRWR-205, Univ. of Texas, Austin, Texas
  6. Baek, K.O. (2004) Transverse mixing in meandering channels with unsteady pollutant source. PhD thesis, Seoul National University, Korea
  7. Blanckaert, K. (2002) Secondary currents measured in sharp open-channel bends. Proc. of the International Conference on Fluvial Hydraulics, River Flow 2002, Vol. 1, Louvain-la-Neuve, Belgium
  8. Blanckaert, K. and Graf, W.H. (2001)Mean flow and turbulence in open-channel bend. J. Hydr. Engrg., ASCE, Vol. 127, No. 10, pp. 835-847 https://doi.org/10.1061/(ASCE)0733-9429(2001)127:10(835)
  9. Booij, R. (2002) Modelling of the secondary flow structure in river bends. Proc. of the International Conference on Fluvial Hydraulics, River Flow 2002, Vol. 1, Louvain-la-Neuve, Belgium
  10. Boxall, J.B., Guymer, I., and Marion, A. (2003) Transverse mixing in sinuous natural open channel flows. J. Hydr. Res., IAHR, Vol. 41, No. 2, pp. 153-165 https://doi.org/10.1080/00221680309499958
  11. Demuren, A.O. and Rodi, W. (1986) Calculation of flow and pollutant dispersion in meandering channels. J. Fluid Mech., 172, pp. 63-92 https://doi.org/10.1017/S0022112086001659
  12. De Vriend, H.J. (1981) Velocity redistribution in curved rectangular channels. J. Fluid Mech., 107, pp. 423-439 https://doi.org/10.1017/S0022112081001833
  13. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., and Brooks, N.H. (1979). Mixing in inland and coastal waters, Academic Press, New York
  14. Henderson, F.M. (1966) Open channel flow, Macmillan Publishing Co., New York
  15. Leschziner, M.A. and Rodi, W. (1979) Calculation of strongly curved open channel flow. J. Hydr. Div., ASCE, 105(HY10), pp. 1297-1314
  16. Naot, D., and Rodi, W. (1982) Calculation of secondary currents in channel flow. J. Hydr. Div., ASCE, 108(HY8), pp. 948-968
  17. Rozovskii, I.L. (1957) Flow of water in bends of open channels. Academy of Science of Ukrainian SSR, Russia
  18. Shiono, K. and Muto, Y. (1998) Complex flow mechanisms in compound meandering channels with overbank flow. J. Fluid Mech., 376, pp. 221-261 https://doi.org/10.1017/S0022112098002869
  19. Shukry, A. (1950) Flow around bends in an open flume. ASCE Trans., ASCE, 115, pp. 751-779
  20. Sung, K.H. (2004) Flow characteristics of secondary currents in curved channels. MS thesis, Seoul National Univ., Korea
  21. Thomson, W. (1876) On the origin of windings of rivers in alluvial plains, with remarks on the flow of water round bends in pipes. Proc. Royal Soc. London, Vol. 25, pp. 5-8
  22. Vennard, J.K. and Street, R.L. (1982). Elementary Fluid Mechanics. sixth ed., John Wiley & Sons, New York