DOI QR코드

DOI QR Code

전극의 전기분해 용출을 통한 해성점토의 개량에 관한 연구

A Study on Improvement of Marine Clay through the Leaching Effect of Electrolyte Reaction in Electrode

  • 한상재 (한양대학교 토목환경공학과) ;
  • 김수삼 (한양대학교 토목환경공학과) ;
  • 김종윤 (한양대학교 토목환경공학과 대학원)
  • 투고 : 2005.09.26
  • 심사 : 2005.11.08
  • 발행 : 2006.03.30

초록

본 연구에서는 해성점토의 전단강도를 증진시킬 목적으로 철과 알루미늄 전극을 직접 삽입한 후 전극을 분해하여 지반 고결화 효과를 유발하였다. 이를 위해 남해안에서 채취한 실제 해성점토에 대해 실내 토조를 이용한 파일럿 실험을 실시하였고, 각각 철과 알루미늄을 삽입한 후 일정 고전류(2.5A)를 적용시켰다. 고결화에 의한 영향을 파악하고자 실험 종료 후에는 콘관입시험기를 이용하여 비배수 전단강도를 측정하였으며, 위치별 함수비와 pH 및 전기전도도를 측정하여 철과 알루미늄의 전극분해에 의한 고결화 효과를 간접적으로 판단하였다. 철 전극 전기분해 실험 결과, 양(+)극부 근처에서의 함수비는 초기에 비해 35% 감소하였고, 음극부 근처에서는 13% 증가하였으나, 양극부에서 용출된 철 이온과 흙 입자의 고결화 작용에 의해 전체적으로 측정된 전단강도는 초기에 비해 상당히 증가하였다. 또한 알루미늄 전극을 이용하였을 경우, 철에 비해 비교적 균일한 전단강도 증진효과가 나타났으며, 그 개량정도 역시 더 크게 나타났다.

In this study, the iron and aluminium electrode was put in marine clay which was taken from south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitation which was developed by electrode decomposition. For raising the cementation rate and reducing treatment time, high electric current( 2.5A) was applied in each electrode at semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. The iron electrode decomposition test results show that the water content adjacent to anode section decreased in 35% and increased in 13% at cathode section. The measured shear strength however, was increased considerably comparing to initial shear strength because of cementation effect between iron ions and soil particles. In case of aluminium electrode decomposition test, the distribution of measured shear strength and degree of improvement were more homogeneous than iron electrode decomposition test.

키워드

참고문헌

  1. 심은기, 황영기, 전해수(1999) 알칼리용액에서 알루미늄의 부식속도 측정, Journal of the Korean Electrochemical Society, Vol. 2, No. 3
  2. 이정철(2004) 수평 배수공법을 이용한 중금속 오염토의 복합동전기 정화기술 개발, 석사학위논문, 한양대학교
  3. 정동준, 이종대(1999) 알칼리용액에서 알루미늄의 부식거동 및 음이온억제제의 효과 연구, 산업과학기술연구소 논문집
  4. 황규대(1994) 활성슬러지공정에서 철의 전기분해를 이용한 탈인에 관한 연구, 한국물환경공학회지, 한국물환경학회
  5. Acar Y. B., Alshawabkeh A. N. (1993) Principles of electrokinetic remediation. Environmental Science and Technology, Vol. 27, No. 13, pp. 2638-2647 https://doi.org/10.1021/es00049a002
  6. Barron, R. A. (1948) Consolidation of finegrained soil by drain well, Geotextile and Geomembranes, Vol. 10, No. 3
  7. Bower, A. R., and Huang, C. P. (1987) Role of Fe(III) in metal complex adsorption by hydrous solids, Wat. Res., Vol. 21, No. 7, pp. 757-764 https://doi.org/10.1016/0043-1354(87)90150-3
  8. Fukue, M, Nakamura, T, and Kato, Y. (1999) Cementation of soils due to calciumcarbonate, Soil and Foundation, Vol. 39, No. 6, pp. 55-64 https://doi.org/10.3208/sandf.39.6_55
  9. Gray, D. H. and Schlocker, J. (1969) Electrochemical alteration of clay soils, Clay and Clay Minerals, Vol. 1, No. 7, pp. 309-322
  10. Hansbo, S. (1979) Consolidation of clay by band-shaped prefabricated drains, Ground Engineering, Vol. 12, No. 5, pp. 16-25
  11. Micic, S., Shang, J. Q., Lo, K. Y. (2003) Electrocementation of a marine clay induced by electrokinetics, International Journal of Offshore and Polar Engineering, Vol. 13, No. 4
  12. Mitchell J. K. (1993) Fundamentals of soil behavior-2nd edition, Wiley Interscience, pp. 256-258
  13. Quigley, R. M. (1980) Geology, mineralogy and geochemistry of canadian soft soil, Canadian Geotechnical Journal, Vol. 20, pp. 288-298 https://doi.org/10.1139/t83-032
  14. Rao, S. M., Sridharan, A., and Chandrakaran, S. (1989) lnfluence of drying on liquid limit behaviour of a marine clay, Geotechnique, Vol. 39, No. 9, pp. 840-845
  15. Rinaldi, V. A., and Cuester, G. A. (2002) Ohmic conductivity of a compacted silty clay, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 10, 824-835 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(824)
  16. Segall, B., and Bruell, C. (1992) Electro-osmotic contaminantremoval processes, ASCE, Vol. 118, No. 1, pp. 84-100
  17. Skempton, A. W. (1953) Soil mechanics in relation to geology, Proc. of Yorkshire Geological Soc., Vol. 29, pp. 33
  18. Townsend, F. (1985) Geotechnical characteristics of residual soils, ASCE, Vol. 111, No 1. pp. 77-94 https://doi.org/10.1061/(ASCE)0733-9445(1985)111:1(77)
  19. Yamanouchi, T., Miura, N. (1982) Soil improvement with quicklime and filter fabric, ASCE, Vol. 108, No. GT7, pp. 35-46