DOI QR코드

DOI QR Code

Coefficients of Moment Equations for Long-Span Soil-Metal Box Structures

장지간 지중강판 박스구조물의 휨모멘트 계수식 제안

  • Received : 2005.07.08
  • Accepted : 2005.11.09
  • Published : 2006.01.31

Abstract

This paper evaluates the moment equations in the 2000 Canadian highway bridge code (CHBDC) for soil-metal box structures, which are applicable to the span less than 8 m. Finite element analyses carried out for soil-metal box structures having spans of 3-12 m using the deep corrugated metal plates under three construction stages; backfill up to the crown, backfill up to the cover depth, and live loading. The coefficients of moment equations are newly proposed based on the results of numerous finite element analyses considering various design variables, such as span length, soil depth, backfill conditions. The validity of the proposed coefficients in the moment equations of the 2000 CHBDC is investigated by the comparison with the existing coefficients and numerical results of finite element analyses. The comparisons show that the moments of the 2000 CHBDC give good predictions for the span less than 8m, but underestimate for the span greater than 8m, whereas the proposed moments give good estimates of numerical results for the spans of 3-12 m. In addition, this study suggests the use of high strength steel to satisfy the requirement of design bending strength for the span greater than 8 m.

본 논문은 CHBDC(2000)에서 적용중인 지간 8 m까지 사용 가능한 지중강판 박스구조물의 휨모멘트 설계식을 평가하였다. 3단계의 시공과정(최소 토피고까지의 뒷채움, 토피고까지의 뒷채움, 활하중 재하)을 고려하고 대골형 파형강판을 사용하여 지간 3~12 m에 해당하는 지중강판 박스구조물의 수치해석을 수행하였다. 휨모멘트 계수식은 지간, 토피고, 뒷채움 흙 같은 다양한 설계변수를 고려한 수치해석 결과를 토대로 새롭게 제안되었다. 또한, CHBDC(2000)의 휨모멘트식에서 새롭게 제안된 계수식의 타당성은 기존의 계수식과 수치해석결과와 비교하여 평가되었다. 기존의 CHBDC(2000)의 식으로 구한 모멘트는 지간 8 m이하에서 수치해석 결과와 잘 일치하지만, 지간 8 m이상에서는 과소평가되었다. 반면에, 제안된 식으로 산정한 모멘트는 지간 3~12 m까지 수치해석결과와 잘 일치하였다. 한편, 본 논문은 지간 8 m이상의 장지간 지중강판 박스구조물에 대해 휨강도에 대한 안정성을 확보하기 위해 고강도강의 사용을 제안하였다.

Keywords

References

  1. American Association of State Highway and Transfortation Officials (AASHTO) (1996) Standard Specification for Highway Bridges, Washington, D.C
  2. Canadian Standards Association (2000) Canadian Highway Bridge Design Code, Ministry of Transportation of Canada, Canada
  3. Choi, D.-H., Kim, G.-N., and Byrne, Peter M. (2004) Evaluation of moment equation in the 2000 Canadian highway bridge design code for soil-metal arch structures, Canadian Journal of Civil Engineering, 31/2, pp.281-291 https://doi.org/10.1139/l03-097
  4. Duncan, J.M. (1979) BEhavior And Design Of Long-span Metal Culverts, Journal of the Geotechnical Engineering Division, Vol. 105, No.3, pp. 399-418
  5. Duncan, J.M. and Chang, C.Y. (1970) Nonlinear analysis of stress and strain in soils, ASCE Journal of Geotechnical Division, 95(GM5), pp. 1629-1653
  6. Duncan, J.M., Seed, R.B., and Drawsky R.H. (1985) Design of corrugated metal box culverts, Transportation Research Record 1008, Transportation Research Board, National Research Council, Washington, DC, pp. 33-41
  7. Katona, M.G., Smith, J.M., Odello, R.S., and Allgoog, J.R.. (1976) CANDE-A Modem approach for structural design and analysis of buried culverts, FHWA-RD-77-5
  8. McCavour, T.C., Byrne P.M., and Morrison, T.D. (1998) Long-span reinforced steel box culverts, Transportation Research Record 1624, Transportation Research Board, National Research Council, Washington, DC, pp. 184-195
  9. Musser, S.C. (1989) CANDE-89-Cu1vert analysis and design computer program. User manual, FHWA-RD-89-169, Federal Highway Administration, Washington, D.C
  10. Standard Specification for Transportation Materials and Methods of Sampling and Testing (ASTM) (1998) American Association of State Highway and Transfortation Officials, Washington, D.C