DOI QR코드

DOI QR Code

일축대칭 FRP 부재의 전체좌굴에 관한 실험적 연구

Experimental Study on Global Buckling of Singly Symmetric FRP Members

  • 이승식 (건국대학교 인공근육연구센터)
  • 투고 : 2005.04.29
  • 심사 : 2005.12.05
  • 발행 : 2006.01.31

초록

일축대칭의 단면특성을 갖는 T형 부재는 단면의 특성상 축방향 압축력으로 인하여 전체좌굴이 발생할 경우 휨-비틀림 좌굴이 지배모드가 된다. 인발성형 T형 부재의 휨-비틀림 좌굴거동을 실험적 연구를 통하여 알아보았다. E-glass/vinylester와 E-glass/polyester로 만들어진 2종류의 인발성형 부재가 사용되었으며, 보강층의 배치, 보강층의 두께, 구성물질의 부피비, 역학적 성질 등을 실험적으로 규명하였다. 좌굴실험에서 휨 및 비틀림에 대한 단순지지 조건을 만족시키기 위해서 knife edge를 사용하였으며, 3개의 potentiometer를 사용하여 실험체의 횡변위와 비틀림각을 측정하였다. 모든 실험체에 휨-비틀림 좌굴이 발행하였으며, 대부분의 실험체가 후좌굴 강도를 가지고 있음을 알 수 있었다.

Due to single symmetry of cross section, T-shaped members are likely to buckle in a flexural-torsional mode when they are subjected to axial compression. Therefore, the flexural-torsional buckling can be regarded as a governing mode of global buckling. An experimental program has been carried out to investigate the flexural-torsional buckling behavior of pultruded T-shaped members. Two types of pultruded members were tested in the experiment, and they were made of either E-glass/vinylester or E-glass/polyester. Lay-up and thickness of reinforcing layers, volume fractions of each constituents in layers, mechanical properties were experimentally determined. Two sets of knife edge fixure were used to simulate simple support condition for flexure and twisting, and the lateral displacements and the angle of twist were measured using three potentiometers. Every specimen buckled in a flexural-torsional mode, and most of the specimens showed post-buckling strength.

키워드

참고문헌

  1. Acosta Costa, F.J. (1999) Experimental Characterization of the Mechanical and Structural Properties of Fiber Reinforced Polymeric Bridge Deck Components, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA
  2. ASTM D 792-00 (2000) Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, American Society for Testing and Materials, West Conshohocken, USA
  3. ASTM D 341O/D 3410M-93 (1995) Standard Test Method for Compressive Properties of Polymer Matrix Composite Material with Unsupported Gage Section by Shear Loading, American Society jar Testing and Materials, West Conshohocken, USA
  4. ASTM D 5379/0 5379M-93 (1993) Standard test methods for shear properties of composite materials by v-notched beam method, American Society jar Testing and Materials, West Conshohocken, USA
  5. Bakis, C.E., Bank, L.C., Brown, V.L., Cosenza, E., Davalos, J.F., Lesko, J.J., Machida, A., Rizkalla, S.H., and Triantafillou, T.C. (2002) Fiber-reinforced polymer composites for construction-state-of-the-art review, Journal of Composites for Construction, Vol. 6, No.2, pp. 73-87 https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)
  6. Barbero, E.J. (1999) Introduction to Composite Material Design, Taylor and Francis
  7. Barbero, E.J. and Tomblin, J. (1993) Euler buckling of thin-walled composite columns, Thin-Walled Structures, Vol. 17, No.4, pp. 237-258 https://doi.org/10.1016/0263-8231(93)90005-U
  8. Barbero, E.J. and Trovillion, J. (1998) Prediction and measurement of the post-critical behavior of fiber-reinforced composite columns, Composites Science and Technology, Vol. 58, pp. 1335-1341 https://doi.org/10.1016/S0266-3538(98)00006-2
  9. Davalos, J.F. and Qiao, P. (1997) Analytical and Experimental Study of Lateral and Distortional Buckling of FRP Wide-Flange Beams, Journal of Composites for Construction, Vol. 1, No.4, pp. 150-159 https://doi.org/10.1061/(ASCE)1090-0268(1997)1:4(150)
  10. Hewson, P. (1978) Buckling of pultruded glass fiber-reinforced channel sections, Composites, Vol. 9, No.1, pp. 56-60 https://doi.org/10.1016/0010-4361(78)90520-7
  11. Hoff, N.J., Boley, B.A., and Coan, J.M. (1948) The development of a technique for testing stiff panel in edgewise compression, Proceedings of the Society for Experimental Stress Analysis, Vol. 5, No.2, pp.14-24
  12. Jung, S.N., Nagaraj, V,T., and Chopra, I. (1999) Assessment of composite rotor blade modeling techniques, Journal of the American Helicopter Society, Vol. 44, No.3, pp.188-205
  13. McManus, P.F. and Culver, C.G. (1969) Nonuniform torsion of composite beams, Journal of the Structural Division, ASCE, Vol. 95, No. ST6, pp. 1233-1256
  14. Park, J.Y. (2001) Pultruded Composite Materials under Shear Loading, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA
  15. Razzaq, Z., Prabhakaran, R., and Sirjani, M.M. (1996) Load and Resistance Factor Design (LRFD) Approach for Reinforced-Plastic Channel Beam Buckling, Composites: Part B, Vol. 27B, No. 3-4, pp. 361-369
  16. Stoddard, W.P. (1997) Lateral-Torsional Buckling Behavior of Polymer Composite I-Shaped Member, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA
  17. Southwell, R.V. (1932) On the analysis of experimental observations in problems of elastic stability, Proceedings of the Royal Society of London: Series A, Vol. 135, pp. 601-616
  18. Volovoi, V.V., Hodges, D.H., Cesnik, C.E.S., and Popescu, B. (2001) Assessment of beam modeling methods for rotor blade applications, Mathematical and Computer Modelling, Vol. 33, Issue 10-11, pp. 1099-1112
  19. Wang, Y. and Zureick, A. (1994) Characterization of the longitudinal tensile behavior of pultruded i-shape structural members using coupon specimens, Composite Structures, Vol. 29, pp. 463-472 https://doi.org/10.1016/0263-8223(94)90115-5
  20. Ye, B.S., Svenson, A.L., and Bank,.L.C. (1995) Mass and volume fraction properties of pultruded glass fiber-reinforced composites, Composites, Vol. 26, No. 10, pp. 725-731 https://doi.org/10.1016/0010-4361(95)91140-Z
  21. Zureick, A. and Scott, D. (1997) Short-term behavior and design of fiber-reinforced polymeric slender members under axial compression, Journal of Composites for Construction, Vol. 1, No. 4, pp. 140-149 https://doi.org/10.1061/(ASCE)1090-0268(1997)1:4(140)
  22. Zureick, A. and Steffen, R. (2000) Behavior and design of concentrically loaded pultruded angle struts, Journal of Structural Engineering, Vol. 126, No.3, pp. 406-416 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(406)