DOI QR코드

DOI QR Code

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges

생애 신뢰성에 기초한 강교의 LCC최적설계

  • Received : 2005.04.19
  • Accepted : 2005.10.31
  • Published : 2006.01.31

Abstract

This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

본 논문에서는 생애주기동안 발생하는 부식이나 일평균교통량 및 중차량의 통행량와 같은 사용환경에 의존하는 강교의 생애신뢰성에 기초한 생애주기비용(Life-Cycle Cost: 이하 LCC) 최적설계 방법론을 제안하였다. 강교 최적설계를 위한 LCC는 초기비용, 생애주기 기대유지관리비용, 생애주기 기대직접복구비용과 인적 혹은 물적손실비용, 도로이용자비용, 그리고 사회-경제 손실비용을 포함하는 간접복구비용을 현재가치의 합으로 정식화하였다. 이러한 LCC비용항목 중에서 생애주기 복구비용의 산정을 위해서는 하중과 저항이력에 의존하는 누적손상확률로부터 산정되는 연파손확률이 고려되어야한다. 이를 위해 본 논문에서는 Nowak의 활하중 모델(1993)과 부식개시, 부식률, 그리고 재도장영향을 고려한 수정된 부식모델을 제안하였다. 이와같이 본 연구에서 제안된 LCC 최적설계 방법론은 3 경간연속(40 m+50 m+40 m=130 m)의 실제 강박스거더교에 적용되었고, 강재종류, 부식환경, 교통량 및 할인율에 따른 LCC의 효율성에 대해 비교 고찰하였다. 적용예를 통해 부식환경, 일평균교통량, 그리고 중차량의 통행량, 할인율 등은 강교 LCC최적설계에 매우 중요한 영향을 미칠 수 있음을 알 수 있었으며, 이러한 교량의 사용환경인자들은 경우에 따라 LCC 최적설계에 대한 주요 변수로 고려되어야 할 것으로 판단된다.

Keywords

References

  1. 건설연구원(2004) 건설공사 표준품셈
  2. 건설교통부(2003) 강교의 최적설계와 경채적인 유지관리를 위한 LCC분석 기법 및 시스템개발. 1차년도보고서
  3. 건설교통부/시설안전기술공단(2000) 도로교의 공용수명 연장방안 연구. 시설안전기술공단 연구보고서, BR-2000- R 1-37
  4. 과학기술부(2001 ) 엔지니어링 사업대가 기준
  5. 경기개발연구원(1999) 경기도 물류비용 분석 및 물류체계 개선 연구. 최종보고서
  6. 사단법인 도로교통협회(2000) 도로교설계기준
  7. 서울특별시건설안전관리본부(2002) 도로관리사업소 시설물유지보수공사 설계지침
  8. 이광민(2000) 강상판교의 Life-Cycle Cost 설계. 석사학위논문. 한양대학교
  9. 이수범, 심재익(1997) 교통사고비용의 추이와 결정요인. 교통개발 연구원 연구보고서 , 연구총서 97-09
  10. 조효남(1998) 강상형교의 최적설계 프로그램(CAOD-sb) 개발. 삼보기술단, 1차년도 보고서
  11. 한국강구조학회(1997) 고속철도의 강교량 활용화에 관한 연구. 최종보고서
  12. Albrecht, P. (1983) S-N Fatigue Reliability Analysis of Highway Bridges. Probabilistic Fracture Mechanics and Fatigue Methods: Application for Structural Design and Maintenance, ASTM STP 798
  13. Albrecht, P. and Naeemi, A.H. (1984) Performance of Weathering Steel in Bridges. National Cooperative Highway Research, Report 272
  14. Al-Shaleh, K.S. (1994) Optimum design of straight steel box girder bridges. Ph.D. Dissertation, Georgia
  15. Ang, A. H-S. and Tang, W.H. (1984) Probability Concepts in Engineering Planning and Design, Vol I and II', John Wiley, 1984
  16. Berthelot, C.F., Sparks, G.A., Blomme, T., Kajner, L., and Nickeson, M. (1996) Mechanistic-probabilistic vehicle operating cost model. Journal of Transportation Engineering, ASCE, 1996 122(5): 337-341 https://doi.org/10.1061/(ASCE)0733-947X(1996)122:5(337)
  17. Cho, H.N., Lee, K.M., and Choi, Y.M. (2004) Life-Cycle Cost Effective Optimum Design of Steel Bridges. Journal of constructional Steel Research, Vol. 60, No. 11, 1585-1613 https://doi.org/10.1016/j.jcsr.2003.10.009
  18. De Brito, J. and Branco, F.A. (1995) Road bridges functional failure costs and benefits. Canadian Journal of Civil Engineering, 25, 261-270 https://doi.org/10.1139/cjce-25-2-261
  19. Ellingwood, E.R., Naus, D.j. (1999) Condition Assessment and Maintenance of Aging Structure in Critical Facilities A probabilistic Approach. Case Study in Optimal Design and Maintenance Planning of Civil Infrastructure Systems, ASCE, pp 45-5
  20. Farkas, J. (1996) Optimum design of welding bridges. Welding in the World, 38, 295-306
  21. Inro (1999) EMME/2 User's Manual, Software Release 9.0
  22. Kuribayashi, E. and T. Tazaki. (1983) Outline of the earthquake disaster. pp. 67-90 in : Report on the Disaster Caused by the Miyagi-ken-oki Earthquake of 1978, Report No. 159, Public Work Research Institute, Ministry of Construction, Japan
  23. Lee, J.C. (1996) Reliability-based cost effective aseismic design of reinforced concrete frame-wall building. Ph.D dissertation, University of California Irvine
  24. Maunsell LTD. and Transport Research Laboratory (2000) Optimum Maintenance Strategies for different Bridge Type: Bridge Data. Final Report, The Highways Agency, London
  25. Melchers, R.E. (1987) Structural Reliability, Analysis and Prediction. Ellis Horwood Ltd., West Sussex, England
  26. Nowak, A.S. (1993) Calibration of LRFD Bridge Design Code. National Cooperative Highway Research: Final Report
  27. Nowak, A.S., Yamai, A.S., and Tabsh, S.W. (1994) Probabilistic Model for Resistance of Concrete Bridge Girder. ACI Structure Journal, Vol. 91, No.3, pp. 269-276
  28. Seskin, S.N. (1990) Comprehensive framework for highway economic impact assessment methods and result. Transportation Research Record 1274, Transporationa Research Board, Washington, D.C., 24-34
  29. Stewart M.G. and Hossain, M.B. (2001) Time-dependant Deflection, Serviceability Reliability and Expected Cost for RC beams. Structural Safety and Reliability, Corotis et. al. (eds)
  30. Vanderplaats, Garret N. (1986) ADS: A FORTRAN Program for Automated Design Synthesis. Engineering Design Optimization, INc, Santa Barbara, California
  31. Wen, Y.K. and Kang, Y.K. (1997) Optimal seismic design based on life-cycle cost. Proc. of the International Workshop on Optimal Performance of Civil Infrastructure Systems, ASCE, Portland, Oregon, 194-210
  32. Zhao, Z. Haldar, A., and Breen Jr, F.L (1994) Fatigue-reliability evaluation of steel bridges. Journal of Structural Engrg., ASCE, 120(5), 1608-1623 https://doi.org/10.1061/(ASCE)0733-9445(1994)120:5(1608)