Evaluation of New Selective Molecularly Imprinted Polymers for the Extraction of Resveratrol from Polygonum Cuspidatum

  • Cao Hui (School of Chemistry and Chemical Engineering, Nantong University) ;
  • Xiao Jian Bo (College of Chemistry and Chemical Engineering, Central South University) ;
  • Xu Ming (Research Institute for Molecular Pharmacology and Therapeutics, Central South University)
  • Published : 2006.06.01

Abstract

Four different molecularly imprinted polymers (MIPs) were prepared using resveratrol as the template, methacrylic acid (MAA) or acrylamide (AA) as functional monomers, 2,2-azobisisobutyronitrile (AIBN) as the initiator, and thermo- or photo-induced polymerization. The ability of the different polymers to rebind selectively not only the template but also other phenols was evaluated. In parallel, the influence of the different templates and functional monomers used during polymer syntheses on the performance of the obtained MIPs was also studied through different rebinding experiments. The binding ability and selectivity of the polymer were studied by static balance method and Scatchard analysis. It was concluded that AA-based polymer by photo-induced polymerization presents the best properties to be used as a selective absorbent for the extraction of resveratrol.

Keywords

References

  1. A. G. Mayes and K. Mosbach, Trends Anal. Chem., 16, 321 (1997) https://doi.org/10.1016/S0165-9936(97)00037-X
  2. P. A. G. Cormack and A. Z. Elorza, J. Chromatogr. B, 804, 173 (2004) https://doi.org/10.1016/j.jchromb.2004.02.013
  3. W. Donga, M. Yan, M. L. Zhang, Z. Liu, and Y. M. Li, Anal. Chim. Acta, 542, 186 (2005) https://doi.org/10.1016/j.aca.2005.03.032
  4. J. O. Mahony, A. Molinelli, K. Nolan, M. R. Smyth, and B. Mizaikoff, Biosens. Bioelectron., 21, 1383 (2006) https://doi.org/10.1016/j.bios.2005.05.015
  5. D. Kriz and K. Mosbach, Anal. Chim. Acta, 300, 71 (1995) https://doi.org/10.1016/0003-2670(94)00368-V
  6. T. Y. Guo, Y. Q. Xia, J. Wang, M. D. Song, and B. H. Zhang, Biomaterials, 26, 5737 (2005) https://doi.org/10.1016/j.biomaterials.2005.02.017
  7. C. Baggiani, L. Anfossi, P. Baravalle, C. Giovannoli, and C. Tozzi, Anal. Chim. Acta, 531,199 (2005) https://doi.org/10.1016/j.aca.2004.10.025
  8. J. M. Elhiney and L. A. Lawton, Toxicol. Appl. Pharm., 203, 219 (2005) https://doi.org/10.1016/j.taap.2004.06.002
  9. J. O. Mahony, K. Nolan, M. R. Smyth, and B. Mizaikoff, Anal. Chim. Acta, 534, 31 (2005) https://doi.org/10.1016/j.aca.2004.07.043
  10. R. Suedee, T. Srichana, C. Sangpagai, C. Tunthana, and P. Vanichapichat, Anal. Chim. Acta, 504, 89 (2004) https://doi.org/10.1016/S0003-2670(03)00951-6
  11. L. Feng, Y. J. Liu, X. D. Zhou, and J. M. Hu, J. Colloid Interf. Sci., 284, 378 (2005) https://doi.org/10.1016/j.jcis.2004.10.054
  12. M. Matsuguchi and T. Uno, Sensor. Actuat. B, 113, 94 (2006) https://doi.org/10.1016/j.snb.2005.02.028
  13. J. Bastide, J. P. Cambon, F. Breton, S. A. Piletsky, and R. Rouillon, Anal. Chim. Acta, 542, 97 (2005) https://doi.org/10.1016/j.aca.2005.02.054
  14. S. G. Hu, L. Li, and X. W. He, J. Chromatogr. A, 1062, 31 (2005) https://doi.org/10.1016/j.chroma.2004.11.036
  15. D. Coutinho, A. O. Acevedo, and G. R. Dieckmann, Micropor. Mesopor. Mat., 54, 249 (2002) https://doi.org/10.1016/S1387-1811(02)00383-9
  16. L. Zhou, J. C. Xie, and Y. F. Ge, Acta. Phys. Chim. Sin., 18, 808 (2002).
  17. G. J. Soleas, E. P. Diamandis, and D. M. Goldberg, Clin. Biochem., 30, 91 (1997) https://doi.org/10.1016/S0009-9120(96)00155-5
  18. L. Fremont, Life Sci., 66, 663 (2000) https://doi.org/10.1016/S0024-3205(99)00410-5
  19. V. G. Soto, Drug News Perspect, 16, 299 (2003) https://doi.org/10.1358/dnp.2003.16.5.829318
  20. J. M. Wu, Z. R. Wang, T. C. Hsieh, J. L. Bruder, J. G. Zou, and Y. Z. Huang, Int. J. Mol. Med., 8, 3 (2001)
  21. F. Bianchini and H. Vainio, Eur. J. Cancer Prev., 12, 417 (2003) https://doi.org/10.1097/00008469-200310000-00011
  22. M. J. Syu, J. H. Deng, and Y. M. Nian, Anal. Chem. Acta, 504, 167 (2004) https://doi.org/10.1016/S0003-2670(03)00879-1