Denaturing Gradient Gel Electrophoresis를 이용한 매립지 침출수로 오염된 지하수의 세균 군집 분석

Analysis of Bacterials Community Structure in Leadchate-Contaminated Groundwater using Denaturing Gradient Gel Electrophoresis

  • 김재수 (이화여자대학교 환경학과) ;
  • 김지영 (이화여자대학교 환경학과) ;
  • 구소연 (이화여자대학교 환경학과) ;
  • 고경석 (한국지질자원연구원 지하수지열연구부) ;
  • 이상돈 (이화여자대학교 환경학과) ;
  • 조경숙 (이화여자대학교 환경학과) ;
  • 고동찬 (한국지질자원연구원 지하수지열연구부)
  • Kim Jai-Soo (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim Ji-Young (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Koo So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Ko Kyung-Seok (Ground & Geothermal Resources Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee Sang-Don (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Koh Dong-Chan (Ground & Geothermal Resources Division, Korea Institute of Geoscience & Mineral Resources)
  • 발행 : 2006.06.01

초록

본 연구는 매립지 침출수로 오염된 지하수에서 수지화학적 분석결과와 미생물 군집구조 사이의 관계를 밝히기 위해 수행되었다. 이 연구를 위해 5개의 시료, 즉 침출수(KSG1-12), 처리수(KSG1-16), 두 개의 오염 지하수(KSG1-07과 KSG1-08), 비오염 지하수(KSG1-13)를 채취하여 분석하였다. 각 시료의 pH는 순서대로 8.83, 8.04, 6.87, 6.87, 6.53이였으며, 산화환원전위(Eh)는 각각 108, 202, 47, 200, 154 mV 이였고, 전기전도도(EC)는 3710, 894, 1223, 559, 169.9 $\mu$S/cm이였으며, 부유물질(SS)의 농도는 각각 86.45, 13.74, 4.18, 0.24, 11.91 mg/L이었다. KSG1-12 시료의 음이온 농도가 전체적으로 높았는데, 특히 염소이온($Cl^-$)와 중탄산염 ($HCO_3^-$)이 높았다. 기타 전자수용체와 관련 있는 이온들의 농도에서, 철(Fe), 망간(Mn), 황산염($SO_4^{2-}$)은 KSG01-08보다 KSG1-07에서 더 높았고 질산염은 반대로 나타났다. DGGE fingerprint 분석을 통한 유사도 비교는 KSG1-13과 KSG1-16이 57.2%로 가장 높았는데, 둘 다 오염도가 낮거나 오염이 전혀 없기 때문으로 추정된다. 한편, KSG1-08은 KSG1-13과 25.8% 그리고 KSG1-12와 27.6%의 유사성을 나타냈는데 이는 오염도의 차이 때문일 것으로 사료된다. 각 시료 별 우점종들의 가장 많이 분포된 계통발생학적 집단을 보면 KSG1-12는 분석된 클론 중 55.6%가 $\alpha$-Proteobacteria에 속하였고, KSG1-16은 50.0%가 $\gamma$-Proteobacteria, KSG1-07은 66.7%가 $\beta$-Proteobacteria, KSG1-08은 54.5%가 $\gamma$-proteobacteria, KSG1-13은 36.4%가 $\beta$-Proteobacteria에 속하였다. 이러한 결과를 통해 매립지 침출수가 지하수를 따라 흐르면서 미생물 군집구조가 바뀌었음을 알 수 있었는데, 오염물질의 농도변화, 이용 가능한 전자수용체, 및 기타 여러 환경요인들의 차이에 의한 것임을 추측할 수 있다.

This research has been performed to clarify the relationship between hydrogeochemistry and bacterial community structure in groundwater contaminated with landfill leachate. We collected and analyzed samples from 5 sites such as leachate (KSG1-12), treated leachate (KSG1-16), two contaminated groundwaters (KSG1-07 and KSG1-08) and non-contaminated groundwater (KSG1-13). pH was 8.83, 8.04, 6.87, 6.87 and 6.53 in order; redox potential (Eh) 108, 202, 47, 200 and 154 mV; electric conductivity (EC) 3710, 894, 1223, 559 and 169.9 $\mu$S/cm; suspended solids (SS) 86.45, 13.74, 4.18, 0.24 and 11.91 mg/L. In KSG01-12, the ion concentrations were higher especially in $Cl^-$ and $HCO_3^-$ than other sites. The concentrations of Fe, Mn and $SO_4^{2-}$ were higher In KSG1-07 than in KSG1-08, and vise versa in $NO_3^{2-}$. In the comparison of DGGE fingerprint patterns, the similarity was highest between KSG1-13 and KSG1-16 (57.2%), probably due to common properties like low or none contaminant concentrations. Otherwise KSG1-08 showed lowest similarities with KSG1-13 (25.8%) and KSG1-12 (27.6%), maybe because of the degree of contamination. The most dominant bacterial species in each site were involved in $\alpha$-Proteobacteria (55.6%) in KSG1-12, $\gamma$-Proteobacteria (50.0%) in KSG1-16, $\beta$-Proteobacteria (66.7%) in KSG1-07, $\gamma$-Proteobacteria (54.5%) in KSG1-08 and $\beta$-Proteobacteria (36.4%) in KSG1-13. These results indicate that the microbial community structure might be changed according to the flow of leachate in grounderwater, implying changes in concentrations of pollutants, available electron accepters and/or other environmental conditions.

키워드

참고문헌

  1. Aeson, D. A., M. S. Boguski, O. J. Lipman, J. Ostell, B. F. Ouellet, B. A. Rapp, and D. L. Wheeler. 1999. GenBank. Nucl. Acids Res. 27: 12-17 https://doi.org/10.1093/nar/27.1.12
  2. Amann, R. J., W. Ludwig, and K. -H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial. Rev. 59: 143-169
  3. An, Y. J., Y. H. Joo, J. Y. Hong, H. W. Ryu, and K. S. Cho. 2004. Microbial characterization of toluene-degrading denitrifYing consortia obtained from terrestrial and marine ecosystems. Appl. Microbial. Biotechnol. 65: 611-619
  4. Ameth, J.-D., G. Milde, H. Kemdorff, and R. Schleyer. 1989. Waste deposit influences on groundwater quality as a tool for waste type and site selection for final storage quality, pp. 399-424. In P. Bacci (ed.), The Landfill vol. 20, Springer, Berlin
  5. Bjerg, P.L., K. Rugge, J. K. Pedersen, and T. H. Christensen. 1995. Distribution of redox sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark). Environ. Sci. Technol. 29: 1387-1394 https://doi.org/10.1021/es00005a035
  6. Christensen, T. H., P. Kjeldsen, P. L. Bjerg, D. L. Jensen, J. B. Christensen, A. Baun, H. -J. Albrechtsen, and G. Heron. 2001. Biochemistry of landfill leachate plumes. Appl. Geochem. 16: 695-718
  7. EPA. 2004. In-situ groundwater bioremediation, pp. 1-38. In EPA (ed.), How to Evaluate Alternative Cleanup Technologies of Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers, (EPA 51O-R-04-002)
  8. Eriksson, S., T. Ankner, K. Abrahamsson, and L. Hallbeck. 2005. Propylphenols are metabolites in the anaerobic biodegradation of propylbenzene under iron-reducing conditions. Biodegradation 16: 253-263 https://doi.org/10.1007/s10532-004-1278-z
  9. Kalmbach, S., W. Manz, J. Wecke, and U. Szewzyk. 1999. Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. novo and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int. J. Sys. Bacterial. 49: 769-777
  10. Kimmel, G.E. and O. C. Braids. 1980. Leachate plumes in groundwater from Babylon and Islip Landfills, Long Island, New York. Geological Survey (Geological Survey Professional Paper 1085), Washington, D.C., US
  11. Knittel, K., A. Boetius, A. L. H. Eilers, K. Lochte, and O. P. P. Linke. 2003. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol. J. 20: 269-294 https://doi.org/10.1080/01490450303896
  12. Kohler, H.P.E. 1999. Sphingomonas herbicilovorans MH: a versatile phenoxyalkanoic acid herbicide degrader. J. Ind Microbial. Biotechnol. 23: 336-340 https://doi.org/10.1038/sj.jim.2900751
  13. Lovely, D.R. 1993. Dissimilatory metal reduction. Ann. Rev. Microbial. 47: 263-290 https://doi.org/10.1146/annurev.mi.47.100193.001403
  14. Lyngkilde, J. and T. H. Christensen. 1992. Redox zones of a landfill leachate pollution plume (Vejen, Denmark). J. Contam. Hydrol. 10: 273-289 https://doi.org/10.1016/0169-7722(92)90011-3
  15. Mannisto, M. K., M. A. Tiirola, and J. A. Puhakka. 2001. Degradation of 2,3,4,6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation 12: 291-301 https://doi.org/10.1023/A:1014362508447
  16. Muyzer, G, E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbial. 59: 695-700
  17. Nealson, K.H. and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Ann. Rev. Microbiol. 48: 311-343 https://doi.org/10.1146/annurev.mi.48.100194.001523
  18. Neefs J. M., Y. Van de Peer, L. Hendriks, and R. De Wachter. 1990. Compilation of small ribosomal subunit RNA sequences. Nucl. Acids Res. 18: 2237-2317
  19. Nordin, K. 2004. 4-chlorophenol biodegradation by Arthrobacter chlorophenolicus A6. Dotoral Thesis, Stockholm University, Stockholm, Sweden
  20. Philippot, L. 2005. Tracking nitrate reducers and denitrifiers in the environment. Biochem. Soc. Trans. 33: 200-204 https://doi.org/10.1042/BST0330200
  21. Roling, W. F. M., B. M. Van Breukelen, M. Braster, and H. W. Van Verseveld. 2000. Linking microbial community structure to pollution: Biolog-substrate utilization in and near a landfill leachate plume. Wat. Sci. Technol. 41: 47-53
  22. Stumm, W. and J. J. Morgan. 1996. Aquatic Chemistry. 3rd ed. Wiley InterScience, Chichester, England
  23. Tiirola, M., M. K. Mannisto, J. A. Puhakka, and M. S. Kulomaa. 2002. Isolation and Characterization of Novosphingobiumsp. strain MTl, a dominant polychlorophenoldegrading strain in a groundwater bioremediation system. Appl. Environ. Microbiol. 68: 173-180 https://doi.org/10.1128/AEM.68.1.173-180.2002