Characterization of ptsHI Operon from Leuconostoc mesenteroides SY1, a Strain Isolated from Kimchi

  • Park Jae-Yong (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Jeong Seon-Ju (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Chun Ji-Yeon (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Lee Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Chung Dae-Kyun (School of Biotechnology and Institute of Life Sciene and Resources, Kyung Hee University) ;
  • Kim Jeong-Hwan (Institute of Agriculture & Life Science, Gyeongsang National University)
  • 발행 : 2006.06.01

초록

The ptsHI operon from Leuconostoc mesenteroides ssp. mesenteroides SY1 (L. mesenteroides SY1), a strain isolated from kimchi, was cloned and characterized. The ptsH open reading frame (ORF) was 273 bp in size, which can encode a protein of 90 amino acid residues with a molecular weight of 9,212 Da. The pfsI ORF was 1,719 bp in size, which was capable of encoding a protein of 572 amino acids with a molecular mass of 62,549 Da. ptsH and pfsI genes were transcribed as a single transcript of 2.0 kb in size regardless of carbon sources, supporting the operon structure. Although the deduced amino acid sequences of the HPr and EI were highly homologous with those of other Gram-positive bacteria, an additional amino acid (glutamine at the $3^{rd}$ amino acid) was present in HPr from L. mesenteroides SY1. Phosphorylation sites of HPr included the histidine residue ($16^{th}$) and serine residue ($47^{th}$). Mutant HPrs, in which each phosphorylation site was mutated into alanine, were obtained, and phosphorylation with HPr and mutated HPrs showed that HPr was phosphorylated at the serine residue ($47^{th}$) by HPr kinaseiphosphorylase (HPr K/P).

키워드

참고문헌

  1. Boyd, D. A., D. G. Cvitkovitch, and I. R. Hamilton. 1994. Sequence and expression of the HPr (ptsH) and enzyme I (ptsI) genes of the phosphoenolpyruvate-dependent phosphotransferase transport system from Streptococcus mutans. Infect. Immun. 62: 1156-1165
  2. Christensen, D. P., A. K. Benson, and R. W. Hutkins. 1998. Cloning and expression of the Listeria monocytogenes ptsH and ptsI genes, coding for HPr and enzyme I, respectively, of the phosphotransferase system. Appl. Environ. Microbiol. 64: 3147-3152
  3. Deutscher. J., E. Kuster, U. Bergstedt, V. Charrier, and W. Hiilen. 1995. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to catabolite repression in Grampositive bacteria. Mol. Microbiol. 15: 1049-1053 https://doi.org/10.1111/j.1365-2958.1995.tb02280.x
  4. Frey, N., S. Nessler, S. Fieulaine, K. Vaillancourt, M. Frenette, and C. Vadeboncoeur. 2003. The HPr(Ser) kinase of Streptococcus salivarius reexamined: A hexameric bifunctional enzyme controlled by glycolytic intermediates and inorganic phosphate. FEMS Microbiol. Lett. 224: 67-72 https://doi.org/10.1016/S0378-1097(03)00429-4
  5. Gunnerwijk, M. G. W., P. T. C. van den Bogaard, L. M. Veenhoff, E. H. Heuberger, W. M. de Vos, M. Kleerebezem, O. P. Kuipers, and B. Poolman. 2001. Hierarchical control versus autoregulation of carbohydrate utilization in bacteria. J. Mol. Microbiol. Biotechnol. 3: 401-413
  6. Kim, J. H., J.-Y. Park, S.-J. Jeong, J. Chun, J. H. Lee, D. K. Chung, and J. H. Kim. 2005. Characterization of the ${alpha}$-galactosidase gene from Leuconostoc mesenteroides SY1. J. Microbiol. Biotechnol. 15: 800-808
  7. Kim, J. H., J.-Y. Park, S.-J. Jeong, J. Chun, and J. H. Kim. 2005. Cold shock response of Leuconostoc mesenteroides SY1 isolated from kimchi. J. Microbiol. Biotechnol. 15: 831-837
  8. Kim, T.-Y., R. J. Park, H. C. Chang, D. K. Chung, J.- H. Lee, H. J. Lee, and J. H. Kim. 2000. Cloning and characterization of the Lactococcus lactis subsp. lactis ATCC 7962 ptsHI operon. J. Microbiol. Biotechnol. 10: 829-835
  9. Klaenhammer, T. R., R. Barrangou, B. L. Buck, M. A. Azcarate-Peril, and E. Altermann. 2004. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev. 29: 393-409 https://doi.org/10.1016/j.femsre.2005.04.007
  10. Kravanja, M., R. Engelmann, V. Dossonnet, M. Blüggel, H. E. Meyer, R. Frank, A. Galinier, J. Edutscher, N. Schnell, and W. Hengstenberg. 1999. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: The HPr kinase/phosphatase. Mol. Microbiol. 31: 59-66 https://doi.org/10.1046/j.1365-2958.1999.01146.x
  11. Park, J.-Y., J.-S. Park, J.-H. Kim, S.-J. Jeong, J. Chun, J.-H. Lee, and J. H. Kim. 2005. Characterization of the catabolite control protein (CcpA) gene from Leuconostoc mesenteroides SY1. J. Microbiol. Biotechnol. 15: 749-755
  12. Park, J.-Y., S. J. Nam, J.-H. Kim, S.-J. Jeong, J. K. Kim, Y. L. Ha, and J. H. Kim. 2005. Cloning and characterization of the pyrH gene encoding UMP-kinase from Lactobacillus reuteri ATCC 55739. J. Microbiol. Biotechnol. 15: 525-531
  13. Postma, P. W., J. W. Lengeler, and G. R. Jacobson. 1993. Phosphoenolpyruvate: Carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543-549
  14. Saier, M. H., Jr., S. Chauvaux, G. M. Cook, J. Deutscher, I. T. Paulsen, J. Reizer, and J. J. Ye. 1996. Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142: 217-230 https://doi.org/10.1099/13500872-142-2-217
  15. Stentz, R., R. Lauret, S. D. Ehrlich, F. Morel-Devillel, and M. Zagorec. 1997. Molecular cloning and analysis of the ptsHI operon in Lactobacillus sake. Appl. Environ. Microbiol. 63: 2111-2116
  16. Uraban, A., S. Neukirchen, and K. E. Jaeger. 1997. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res. 25: 2227-2228 https://doi.org/10.1093/nar/25.11.2227