Treatment with Glucanhydrolase from Lipomyces starkeyi for Removal of Soluble Polysaccharides in Sugar Processing

  • Lee Jin-Ha (Engineering Research Institute, Chonnam National University) ;
  • Kim Gha-Hyun (Korean Minjok Leadership Academy) ;
  • Kim Seung-Heuk (Lifenza Co., Ltd.) ;
  • Cho Dong-Lyun (Engineering Research Institute, Chonnam National University) ;
  • Kim Do-Won (Department of Physics, Kangnung National University) ;
  • Day Donal F. (Audubon Sugar Institute, Louisiana State University Agricultural Center) ;
  • Kim Do-Man (Engineering Research Institute, Chonnam National University)
  • Published : 2006.06.01

Abstract

The sole use of the glucanhydrolase (exhibiting both dextranase and amylase activities) from Lipomyces starkeyi hydrolyzed the soluble polysaccharides in sugar syrup more efficiently than a mixed treatment using both commercial dextranase and amylase. The glucanhydrolase treatment of stale sugar cane juice resulted in a yield of square, light-colored sugar crystals.

Keywords

References

  1. Newman, B. A. and E. Kabat. 1985. An immunochemical study of the combining site specifics of C57BL/6J monoclonal antibodies to ${\alpha}$ (1-6)-linked dextran B512. J. Immunol. 135: 1220-1231
  2. Robyt, J. F. 1986. Dextran, pp. 752-767. In: H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges (eds.). Encyclopedia of Polymer Science and Engineering. John Wiley & Sons, New York, NY, U.S.A
  3. Ryu, H. W., D. Kim, E. S. Seo, H. K. Kang, J. H. Lee, S. H. Yoon, J. Y. Cho, J. F. Robyt, D. W. Kim, S. S. Chang, S. H. Kim, and A. Kimura. 2004. Identification of amino-acids residues for key role in dextransucrase activity of Leuconostoc mesenteroides B-742CB. J. Microbiol. Biotechnol. 14: 1075-1080
  4. Park, J. Y., J. S. Park, J. H. Kim, S. J. Jeong, J. Y. Chun, J. H. Lee, and J. H. Kim. 2005. Characterization of the catabolite control protein (CcpA) gene from Leuconostoc mesenteroides SY1. J. Microbiol. Biotechnol. 15: 749-755
  5. Kim, J. H., J. Y. Park, S. J. Jeong, J. Y. Chun, J. H. Lee, D. K. Chung, and J. H. Kim. 2005. Characterization of the ${\alpha}$-galactosidase gene from Leuconostoc mesenteroides SY1. J. Microbiol. Biotechnol. 15: 800-808
  6. Kim, J. H., J. Y. Park, S. J. Jeong, J. Y. Chun, and J. H. Kim. 2005. Cold shock response of Leuconostoc mesenteroides SY1 isolated from kimchi. J. Microbiol. Biotechnol. 15: 831-837
  7. Chen, J. C. P. and C. Chou. 1993. Cane Sugar Handbook, Twelfth Edition. John Wiley and Sons, Inc., NY. pp. 646
  8. Imrie, F. K. E. and R. H. Tilbury. 1972. Polysaccharides in sugar cane and its products, sugar. Technol. Rev. 1: 291-361
  9. Geronimos, G. L. and P. F. Greenfield. 1978. Viscosity increases in concentrated sugar solutions and molasses due to dextrans, pp. 119-126. In: Proceedings of the Queensland Society of Sugar Cane Technologists, 45th Conference. Watson Ferguson and Company, Brisbane, Queensland, Australia
  10. James, G. P. and J. M. Cameron. 1971. The influence of deteriorated can on raw sugar 'filterability,' pp. 247-250. In: Proceedings of the Queensland Society of Sugar Cane Technologists, 38th Conference. Watson Ferguson and Company, Brisbane, Queensland, Australia
  11. Covacevich, M. T., G. N. Richards, and G. Stokie. 1977. Studies on the effect of dextran structure on cane sugar crystal elongation and methods of analysis, pp. 2493-2508. In: ISSCT. Proceedings of the XVI Congress. Impres. Sao Paolo, Brazil
  12. Inkerman, P. A. and G. P. James. 1976. Dextranase II, Practical application of the enzyme to sugar mills, pp. 307-315. In: Proc. Queensland Soc. Sugar Cane Technologists, 43rd Conf. Watson Ferguson and Co., Brisbane, Queensland, Australia
  13. Clarke, M. A. 1997. Dextran in sugar factories: Causes and control, pp. 22-34. Part II. Sugar y Azucar, Nov
  14. Chung, C. C. 2000. Handbook of Sugar Refining. A Manual for the Design and Operation of Sugar Refining Facilities. John Wiley & Sons, Inc., New York, U.S.A
  15. Day, D. F. 1992. Spoilage in the sugar industry, pp. 353- 355. In Wood, B. J. B. (ed.). The Lactic Acid Bacteria. The Lactic Acid Bacteria in Health and disease. Elsevier Applied Science, New York, U.S.A
  16. Koenig, D. and D. F. Day. 1988. The purification and characterization of a dextranase from Lipomyces starkeyi. Eur. J. Biochem. 183: 161-167
  17. Phaff, H. J. and Kurtzman, C.P. 1984. Lipomyces Lodder et Kreger-van Rij, pp. 252-260. In N. J. W. Kreger-van Rij (ed.). The Yeasts, a Taxonomic Study Elsevier Science Publishers, Amsterdam
  18. Kim, D., H. C. Seo, and D. F. Day. 1996. Dextran production by Leuconostoc mesenteroides in the presence of d dextranase producing yeast, Lipomyces starkeyi. Biotechnol. Techniq. 10: 227-232
  19. Koenig, D. W. and D. F. Day. 1989. Induction of Lipomyces starkeyi dextranase. Appl. Environ. Microbiol. 55: 2079- 2081
  20. Kang, H. K., S. H. Kim, J. Y. Park, X. J. Jin, D. K. Oh, S. S Kang, and D. Kim. 2005. Cloning and characterization of dextranase gene (LSD1) from Lipomyces starkeyi and its expression in Saccharomyces cerevisiae. Yeast 22: 1239-1248 https://doi.org/10.1002/yea.1311
  21. Apaire, V., J. P. Guiraud, and P. Galzy. 1983. Selection of yeast for single cell protein production on media based on Jerusalem artichoke extracts. Z. Allg. Mikribiol. 23: 211-218 https://doi.org/10.1002/jobm.3630230402
  22. Kaneko, H., M. Hosohara, M. Tanaka, and T. Itoh. 1976. Liquid composition of 30 species of yeast. Lipids 11: 837-844 https://doi.org/10.1007/BF02532989
  23. Barrett, J. F., T. A. Barrett, and R. Curtiss III. 1987. Purification and partial characterization of the multicomponent dextranase complex of Streptococcus sobrinus and the cloning of the dextranase gene. Infect. Immun. 55: 729-802
  24. Kim, D. and D. F. Day. 1994. A new process for the production of clinical dextran by mixed-culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides. Enzyme Microbial. Technol. 16: 844-848 https://doi.org/10.1016/0141-0229(94)90058-2
  25. Kim, D. and D. F. Day. 1995. Isolation of a dextranase constitutive mutant of Lipomyces starkeyi and its use for the production of clinical size dextran. Lett. Appl. Microbiol. 20: 268-270 https://doi.org/10.1111/j.1472-765X.1995.tb00443.x
  26. Ryu, S. J., D. Kim, H. J. Ryu, S. Chiba, A. Kimura, and D. F. Day. 2000. Purification and partial characterization of a novel glucanhydrolase from Lipomyces starkeyi KSM 22 and its use for inhibition of insoluble formation. Biosci. Biotechnol. Biochem. 64: 223-228 https://doi.org/10.1271/bbb.64.223
  27. Park, J. S., B. H. Kim, J. H. Lee, E. S. Seo, K. S. Cho, H. J. Park, H. K. Kang, S. K. Yoo, M. S. Ha, H. J. Chung, D. L. Cho, D. F. Day, and D. Kim. 2003. Optimization for novel glucanhydrolase production of Lipomyces starkeyi KSM 22 by statistical design. J. Microbiol. Biotechnol. 13: 993-997
  28. Fox, J. D. and J. F. Robyt. 1991. Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal. Bichem. 195: 93-96 https://doi.org/10.1016/0003-2697(91)90300-I
  29. Mukerjea, R., D. Kim, and J. F. Robyt. 1996. Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohydr. Res. 292: 11-20 https://doi.org/10.1016/S0008-6215(96)91017-4
  30. Covacevich, M. T., G. N. Richards, and G. Stokie. 1977. Studies on the effect of dextran structure on cane sugar crystal elongation and methods of analysis, pp. 2493-2508. In: ISSCT. Proceedings of the XVI Congress. Impres. Sao Paolo, Brazil