AdoMet Derivatives Induce the Production of Actinorhodin in Streptomyces coelicolor

  • Lee Yu-Kyung (Bio/Molecular Informatics Center, Konkuk University) ;
  • Young Jung-Mo (Bio/Molecular Informatics Center, Konkuk University) ;
  • Kwon Hyung-Jin (Institute of Bioscience and Biotechnology and Department of Biological Science, Myongji University) ;
  • Suh Joo-Won (Institute of Bioscience and Biotechnology and Department of Biological Science, Myongji University) ;
  • Kim Jin-Young (Department of Molecular Biotechnology, Konkuk University) ;
  • Chong You-Hoon (Department of Molecular Biotechnology, Konkuk University) ;
  • Lim Yoong-Ho (Bio/Molecular Informatics Center, Konkuk University)
  • 발행 : 2006.06.01

초록

Exogenous S-adenosyl-L-methionine (AdoMet) enhances the production of actinorhodin in Streptomyces coelicolor. Thirty compounds related structurally with AdoMet were tested for their actinorhodin production. The relationships between the structures of the compounds tested and their actinorhodin production were analyzed using computational methods, and the molecules containing both bulky substituents at the C6 position of adenine and the long 5'-alkyl chain of adenosine were predicted to show high actinorhodin production.

키워드

참고문헌

  1. Bruheim, P., H. Sletta, M. Bibb, J. White, and D. Levine. 2002. High-yield actinorhodin production in fed-batch culture by a Streptomyces lividans strain overexpressing the pathway-specific activator gene actII-ORF4. J. Ind. Microbiol. Biotechnol. 28: 103-111 https://doi.org/10.1038/sj/jim/7000219
  2. Champness, W. and K. Chater. 1994. Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp., pp. 61-93. In C. Piggot, J. Morgan, and P. Youngman (eds.), Regulation of Bacterial Differentiation. American Chemical Society for Microbiology, Washington, DC, U.S.A
  3. Cramer, R. D., D. E. Patterson, and J. D. Bunce. 1998. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110: 5959-5967 https://doi.org/10.1021/ja00226a005
  4. Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, S. K. Hong, and J. W. Suh. 2003. Accumulation of S-adenosyl-$_L$-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600 https://doi.org/10.1128/JB.185.2.592-600.2003
  5. Kiser, T., M. Bibb, M. Buttner, K. Chater, and D. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwick, U.K
  6. Liao, X., C. Vining, and J. L. Doull. 1995. Physiological control of triphophase-idiophase separation in streptomycete cultures producing secondary metabolites. Can. J. Microbiol. 41: 309-315 https://doi.org/10.1139/m95-043
  7. Matsumoto, A., S. Hong, H. Ishzuka, S. Horinouchi, and T. Beppu. 1994. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene 146: 47-56 https://doi.org/10.1016/0378-1119(94)90832-X
  8. Nayyar, A., A. Malde, R. Jain, and E. Coutinho. 2005. 3DQSAR study of ring-substituted quinoline class of anti-tuberculosis agents. Bioorg. Med. Chem. In press (Available online at http://www.sciencedirect.com)
  9. Okamoto, S., A. Lezhava, T. Hosaka, Y. Okamoto-Hosoya, and K. Ochi. 2003. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J. Bacteriol. 185: 601-609 https://doi.org/10.1128/JB.185.2.601-609.2003
  10. Park, H., S. Shin, Y. Yang, H. Kwon, and J. Suh. 2005. Accumulation of S-adenosylmethionine induced oligopeptide transporters including BldK to regulate diiferentiation events in Streptomyces coelicolor M145. FEMS Microbiol. Lett. 249: 199-206 https://doi.org/10.1016/j.femsle.2005.05.047