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Abstract

The purpose of this paper is to establish the common fixed point theorem in the intuitionistic fuzzy metric
space in which it is a little revised in Park [11]. Our research are an extension of Jungck’s common fixed point

theorem (8] in the intuitionistic fuzzy metric space.
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1. Introduction

Zadeh [17] was introduced to the concept of fuzzy
sets, Lowen [10] is defined convergence in a fuzzy topo-
logical space which enables us to characterize fuzzy
compactness. Grabiec [6], Park and Kim [12] are stud-
ied a fixed point in a fuzzy metric space introduced by
Kramosil and Michalek [9], and Subrahmanyam [16] is
proved a common fixed point theorem in fuzzy metric
spaces.

On the other hand, Attanassov [1] generalized this
idea to intuitionistic fuzzy sets, and later there has
been much progress in the study of intuitionistic fuzzy
sets by many authors [1-4, 11]. Also, Park }[11] is de-
fined an intuitionistic fuzzy metric space, and Park,
Kwun and Park [13] are studied a fixed point theorem
in an intuitionistic fuzzy metric space.

In this note, Jungck’s common fixed point theo-
rem in metric space is generalized in this intuitionistic
fuzzy metric space in which it is a little revised in Park
[11].

2. Preliminaries

Now, we will give some definitions, properties and
notation of the intuitionistic fuzzy metric space.
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Definition 2.1([15]). A binary operation * :
[0,1] x [0,1] — [0,1] is continuous t—norm if * is sat-
isfying the following conditions:

(a) * is commutative and associative,

(b) * is continuous,

(¢)ax1=aforallac(01],

(d) axb < ¢cxd whenever ¢ < cand b < d
(a,b,c,d €[0,1)).

Definition 2.2([15]). A binary operation ¢ :
[0,1] x [0,1] — [0,1] is continuous ¢—conorm if ¢ is
satisfying the following conditions:

(a) o is commutative and associative,

(b) ¢ is continuous,

(c)aol=aforall a €[0,1],

(d) aob > cod whenever ¢ < c and b < d
{(a,b,c,d € [0,1]).

Definition 2.3. The 5—tuple (X, M, N,x,0) is
said to be an intuitionistic fuzzy metric space if X is an
arbitrary set, * is a continuous t—norm, ¢ is a continu-
ous t—conorm and M, N are fuzzy sets on X? x (0, c0)
satisfying the following conditions; for all z,y,z € X,
such that

(a) M(z,y,

t) >0,
b) M(z,y,t) =1
t) =
t) *

( =z=y,
(c) M(z,y,t) = M(y,z,1),

(d) M(z,y,t) * M(y,z,5) < M(z,2,t+s),
(e) M(z,y,) : (0,00) — (0,1] is continuous,
() N(z,y,t) >0,

(&) N(z,y,t) =0 ==z =y,
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(h) N(x,y,t) = N(y7$7t)’ _

(i) N(z,y,t) o N(y,z,5) > N(z,2,t + s),

(J) N(il?,y, ) : (O’OO) -

Then (M, N) is called an intuitionistic fuzzy metric
on X. The functions M(z,y,t) and N(z,y,t) denote

the degree of nearness and the degree of non-nearness
between z and y with respect to t, respectively.

(0,1] is continuous.

In this note, we shall denote the intuitionistic fuzzy
metric space (X, M, N, *,0) by X.

Lemma 2.1([6], [12]). In an intuitionistic
fuzzy metric space X, M(z,y,-) is nondecreasing and
N(z,y, ) is nonincreasing for all z,y € X.

In all that follows N stands for the set of natu-
ral numbers and X stands for an intuitionistic fuzzy
metric space X with the following properties:

(2.1) tlim M(z,y,t) =1, tlim N(z,y,t) =0
— 00 — 00

forall z,y € X

Lemma 2.2([13]). Let X be an intuitionistic
fuzzy metric space and T(m,n) be the topology on
X induced by the intuitionistic fuzzy metric. Then
for a sequence {z,} C X, z, — =z if and only if
M(zy,,z,t) — 1 and N(z,,z,t) — 0 as n — co.

Definition 2.4. Let X be an intuitionistic fuzzy
metric space.

(a) A sequence {z,,} in a intuitionistic fuzzy metric
space X is called Cauchy if lim,, oo M (@nyp, Tn,t) =
1, limy, o0 N{Znyp, n,t) = O for every t > 0 and each
p>0.

(b) X is complete if every Cauchy sequence in X
converges in X.

(c) A sequence {z,} in X is convergent to x € X
if limp, oo M(zy,x,t) =1, limy, oo N(zy,x,t) = 0 for
each t > 0.

(d) Amap f: X — X is called continuous at =z if
{f(zn)} converges to f(zg) for each {z,} converging
to xg.

Lemma 2.3. If {z,} is a sequence in an intu-
itionistic fuzzy metric space X and M (z,, Zny1,t) >
M(xo, 21, 25), N(Zn, Tni1,t) < N(2o,21, ) where
a is a positive number with 0 < @ < 1 and n =
1,2,---, 88 > s, ror < r for s,r € [0,1], then
{zn} is a Cauchy sequence in X.
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Proof. For each p, by Definition 2.3 (c),

M(xn+p7 Tn,s t)
t ‘ t
> M(zn, Tni1, 1—)) * M(Zniy1, Tnya, 5)

t
* --~*M(xn+p—17$"+p7;})

t

~) *M(wo,th)

t
> M(zo, 1, —
po

t
* ...*M(aco,th),
N(Zntp, Tn, t)
t t
< N(Tp, Tng1, ;) O N(Znt1, Trta, ;})

t
O 0 N(Tptp—1, Tnip, 5)

t

)oM(xo,m,W)

t
a1

t
< N(Q’)Q,Il,
ba

<>---<>N(:130,x1,
Since

t
F) = 1, lim N(.’EO,SL‘I,

lim M(zg, 21,
n—00

—) =0,
n—oo pa”)
by (2.1)

lim M(zpip,Zn,t) > 1%1x--

n—oo

k1 2>1,

lim N(zptp, Zn,t) <0000---00<0.

n—oo

Hence
lim M(2pip, Tn,t) =1,

n—oo

lim N(zptp, Zn,t) =0

n—oo

Therefore, by Definition 2.4 (a)
quence in X.

, {zn} is a Cauchy se-

3. Result

The following theorem has a intuitionistic fuzzy
analogue for Jungck’s [8].

Theorem 3.1. Let X be a complete intuitionistic
fuzzy metric space and let f,g: X — X be maps that
satisfy the following conditions:

(a) g(X) C f(X).

(b) f is continuous.

(¢) M and N are satisfied the following conditions:

M(g(z),9(y),at) > M(f(z), f(y),1),

>
(3.1) N(g(z),9(y), at) < N(f(z), f(y),?)
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forall z,ye X, t>0and 0 < < 1.
Then f and g have a unique common fixed point
provided f and g commute.

Proof. Let 29 € X. By condition (a), we can find
z1 such that f(z1) = g(zg). Therefore we can define
a sequence {x,} C X such that f(z,) = g(z,_1) by
induction. Also,

M(f(xn)a f(xn+1)7t)
= M(g(zn-1),9(zs),t)

> M(f(@n-1), [ (@), =

= M(g(zn-2),9(wn-1),

)
)

t
(3.2) a

and

N(f(zn), f(@ns1),1)
= N(g(zn-1),9(xn),1)

< N(f(@n-1), fzn), —)

t
o

= N(g(zn-2), )

(mn l)a

t
(3:3) a

< N(f(m0), Fw1), )

So for any positive integer p,
M(f(zn), f(Zntp),t)
> M(f @), f(5nr1), 2) 5 MU @a12). f@na). )

 f(@nap)s It_))

> M(f (o), Fl@n), ——) -

ek M(f(Tn1p—1

~—

pa™
t
—ox M(f(z0), f(z1), W)
and
N(f(wn), f(xn-l-z))?t)

SNwm&ﬂmﬂxgoNumﬁmﬂmHLQ

t

L < N(f(-rn—}-p‘l)a f($n+l?)7 5)
< N(f(zq), f(z1), I#)

N(f(zo), f(x1)

qnrtr— 1)

By (2.1),

lim M (f(zo

n—00

n—o0

from (3.2) and (3.3),

lim M(f(zn), f(@nyp),t) = 1#1x---x1
21,
and
lim N(f(zn), f(Zntp),t) <0000---00

Therefore by Definition 2.4 and Lemma 2.3, {f(z,)}
is Cauchy sequence. By the completeness of X in as-
sumption, there exist w € X such that {f(z,)} con-
verges to w. So g(zn_1) = f(z,) tends to w asn — oo.
Tt can be seen from the condition (b) of theorem that
the continuity of f implies that of g.

So, {g(f(z,))} — g(w). However, g(f(zx,)) =
flg(zy)) from commutativity of f and g. Hence
f(g{xy)) converges to f(w). Since the limits are
unique, f(w) = g(w). Also, f(f(w)) = f(g(w)) by

commutativity and

M (g(w), g(g(w)),t)

t
(3.4) B o

and
N(g(w), g(g(1)). 1)
< N(f(w), [(g(w)), 2)
(38) *
< Nlg(w), glg(w)). —)

By Definition 2.3, (2.1), (3.4) and (3.5),

Hence g(w) = g(g(w)), and g(w) = g(g(w)) =
f(g(w)). Therefore g(w) is a common fixed point of f
and g¢.
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If x,z are two fixed points common to f and g,
then

1> M(z,z,1)
=M(g($)1g(z)7t)
4
t
:M(x,z, a) ......
ZM(z,z,at—n)—>1 as n — 00,
0 < N(z,z,t)
ZN(Q(I),Q(Z),t)
< N(f(2), f(2), )
NG Ly
SN(x,z,%)HO as n — oo.

Therefore z = z by Definition 2.3.

Example 3.1. Let (X, d) be a metric space. De-
note a * b = min{a,b}, a o b = max{a,b} for all
a,b € [0,1] and let M4, N, be fuzzy sets on X2 x (0, 00)
defines as follows:

(3 6) Md(-’ryyat) = m
U Nawwt = YY) uex
IR t—f—d(xay) ’

Then (My, Ny} is an intuitionistic fuzzy metric on X
and (X, My, Ng, *,©) is an intuitionistic fuzzy metric
space.

In this case, let X be the set { : n € N} U {0}
with the metric d defined by d(z,y) = |z — y|, then
from (3.6) '

t
My(z,y,8) = ——
lz—yl |
Ny(z,y,t) = —2"Y_ it 2 yex.

Clearly, (X, My, Ng, x,¢) is a complete intuitionistic
fuzzy metric space. Define g(z) = £, f(z) = § on X.
It is evident that g(X) C f(X). Also, for o = %,

Mg(),5(0), 5) = 72y
2 3t6
- 3+ |z —yl
> M(f(z), f(y),1)
t
it =]
3t
- 3gt+ |z —y|’
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Thus all the conditions of the above Theorem 3.1 are
satisfied, and f and g have the common fixed point 0.

Appendix(Jungck’s Theorem). Let f be a con-
tinuous mapping of a complete metric space (X, d) into
itself and let g : X — X be a map. If

(a) 9(X) C £(X),

(b) g commutes with f,

(c) dlg(x),9(y) < ad(f(z), f(3)) for some a €
(0,1) and all z and y in X,

then f and ¢ have a unique common fixed point.
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