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Abstract

In this paper, a novel post processing using Wiener filtering technique is proposed to p rm further interference 

reduction in FDICA. Using the proposed method, the target signal components are remained with li비e attenuation 

while the interference components are drastic시ly suppressed. The results of experiments show that the proposed method 
achieves a reduction of the residual crosstalk. Compared to the NLMS method, the proposed method has slightly better 
separation performance in SIR, and even requires much less computational complexity.
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I. Introduction

Blind source separation (BSS) is an emerging technique, which 

enables the extraction of target signals from observed mixtures 
without information of sources and mixing system. The goal of 
BSS is to “demix"'' a vector of signals after they have passed 
through a matrix multiplication and transform operation. 
Promising applications can already be found in many fields such 

as speech recognition [1], in biomedical signals like ECG, EEG 
[2], and in communication systems [3].

To achieve BSS, attention has been focused on independent 
component analysis (ICA) [4]. ICA is a signal processing 
technique that is still receiving an increasing attention [5-6]. It 
uses an adaptive gradient algorithm to maximize the information 
content of the output of non-linear "logistic"" function. It is 
somewhat akin to "principle" component analysis" but seeks to 
decompose a signal into statistically independent rather than just 
uncorrelated components. ICA exploits the non-Gaussianity of the 
mixed data and assumes statistically independence of the source 
signals to perform separation. Similar methods for ICA have been
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developed from a number of different view points: minimizing 
Kullback-Leibler (KL) divergence [7], "infomax” [8], or 
Maximum Likelihood (ML) estimation [9].

ICA in the frequency domain (FDICA) is one of the most 
important and practical method for BSS. A convolutive mixture 
in the time domain is converted into multiple instantaneous 
mixtures in the frequency domain, and a complex-valued ICA 
algorithm can be applied for each frequency bin, [10]. Recently, 

noisy convolutive source separation method is studied which is a 
hard problem in the frequency domain BSS [11]. Araki et al., 

pointed out there is a trade-off in the implementation of FDICA 
for convolutive mixtures [12]. According to that study, FDICA 
requires proper frame size of the FFT. The degradation of 
conventional ICA is mainly caused by the crosstalk components 
derived from the reverberation of the interference signal. To 
address this problem, several studies are explored ; such as by 
using time delayed and attenuation parameters [13], by using of 
the NLMS filters to estimate the residual crosstalk components in 
each of the FDICA outputs [14], hereinafter referred to as 
'NLMS post-processing', and by employing an adaptive noise 
canceller (ANC) [15].

This paper proposes a post-processing method by using the 
Wiener filter in the frequency domain. In the time-frequency 
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domain, often called the spectrogram domain, the speech has a 
sparsely distributed characteristics [16]. Therefore, the target 

signal components and interference signal components are well 
distinguished in that domain. By the proposed post-processing, 

the straight components are remained with little loss, while the 
interference signal components are drastically reduced by 

endowing small weight. In addition, the proposed algorithm needs 
not the processing of spectral subtraction as in NLMS 
post-processing, i.e., there is no concerning about the distortion 
of the target signals caused by over subtraction. As the proposed 

one has its weight between 'O' and '1', the system has a stable 
performance without worry about the divergence of the filter 

coefficients [17].
The separation performance of the proposed method is shown 

by experimental results of both the artificial convolutive and 

real-world recorded speech signals. We compare the separative 
performances of the proposed method with that of the NLMS 

post-processing. Also, the computational complexity of proposed 
method is compared to that of NLMS post-processing. The 
proposed method has slightly better performances than NLMS 

post-processing in the separative performance, and has 
considerable reduction of the computational complexity.

The rest of the paper is organized as follows. First, in Section 
II, the straight and crosstalk components in FDICA are examined. 
In the Section III, we describe the Wiener filter in the frequency 
domain, and then propose a post-processing method using Wiener 
filtering technique to reduce the residual crosstalk of FDICA. In 
the Section IV, the results of experiments show the separation 
performance of FDICA is improved by the proposed post­
processing. Furthermore, we compare the separation performance 
and computational complexity between the proposed method and 
the NLMS post-processing. Finally, a conclusion is made in 

Section V.

II. BSS in the frequency domain

x(r) = [저(f),...，我(，)]「is the observed signal vector. Both vectors 

are sampled at time t. Matrix a is the transfer function between 
the sources and the array sensors. In the following, this matrix is 
referred to as the “array matrix'"' or "mixing matrix.'"' This full 

rank matrix is given as

£知(心「”...
n=0

A =:
L-\
眼成)湼■-
_n=0

n=0

Yjam(n)zn
n=0

(2)

where z-1 is used as the unit-delay operator, i.e., z'n.
L-l

x(t) = x(t - n). And 허" denotes the L-tap FIR impulse 

response between the i -th microphone and the j-th sound 

source.
Using a short-time discrete-time Fourier transform (DFT), the 

separating process can be formulated, in each frequency bin co 

and with t frame index, as;

Y(a),z) = W0))A(©)S0),e) = W(d?)X(^y,T), (3)

where X(a小)=A(©)S(a),z),

where Y((w,t) is the estimated signal vector, w((w)represents 
the separating matrix X(<a,-r)is the observed signal vector, A@)is 
the mixing m간”x, and S(ty,r) is source signal vector in the 
frequency domain. For notational simplicity, 0) or T may be 
annihilated if not confused. Given x, w is determined so that all 
elements of Y become mutually independent using the natural 

gradient approach [18] as following iterative equation:

Wm = W,・ + 〃』W,・ (4)

where AW, =[l-(<l>(Y)Yff)]w„

O(Y) = tanh[re(Y)] + j tanh [(7n(Y)],

Suppose that the number of microphone is K, and the number 
of m나tiple sound sources is N. When the multiple sound sources 

are linearly mixed, the observed signals are expressed as

x(/) = As(O, (1)

where s(f) 드 [s"), … (见「is the source signal vector, and

where 0 denotes the averaging operator, subscript i expresses 

the i-th step in iterations, and 〃 is the step size parameter. The 
nonlinear function Q>(Y) is applied separated in the real ^(Y) 

and imaginary 派(Y) parts, respectively.
When the concatenation of a mixing system and a separating 

system is denoted asG, i.e., g = wa, each of the separated signals 
匕obtained by BSS can be described as follows:
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N

斤 1 (5)

Let decompose 匕(0,富)into the sum of straight component 
V(©,c) from the signal and crosstalk component 

from signals 号(0,£)(丿引)Then

匕.(©[)=匕⑴仞亦)+匕⑹(S'), (6)

匕•⑴(〃,c) =£ Ga(©)S (©，C
/ ， (7)

(爲(a))S ： (0择)
j^i - (8)

The direct sound of the interference signals can be almost 

completely removed by FDICA, but the residual crosstalk 
components are still remained by the reverberation [19].

III. Proposed Post-Processing with 
Frequency Domain Wiener Filter

This chapter describes Wiener filter in the frequency domain, 
then proposes a post-processing of FDICA using the Wiener 

filtering te사mique. To compare the performances, the NLMS 
post-processin/ method [14] is shortly described.

There are a number of tasks in numerical processing that are 
routinely handled with Fourier techniques. In the frequency 
domain, the Wiener filter output Y(tw) is the product of the input 
signal C(a», and the filter frequency response $ tv)

Y((y)= 6 勿)C(a». (9)

The estimation error signal e(々)is defined as the difference 
between the desired signal U(ty) and the filter output Y(a?) as

e(0)= U(©) - Y(0) 드 U (co) - ①仞)C(0), (io)

and the mean squared error at a frequency is given by

亦(刎

=^U(co) - 0(<z>)C(o))*(t/(ft>) - 0>(<»)C(to))], (11)

where E[・] is the expectation function, and the symbol * 

denotes the complex conjugate. To obtain the least squared error 
filter, set the complex derivative of equation (11) with respect to 
filter O(£y) to zero

뽾褂 = 2 皿，)%(〃)-% ㈣" (12)

where 与丫㈣=社4。)丫*(©)] is the power 叩ectrum of P(c), and 
PCY (o)) = £(C(ta)y is the cross power spectrum of C((v) and 

¥(©). From equation (12) the least mean squared error Wiener 
filter in the frequency domain is given as

~ . PCY(a))
C>(6>)= CK .

乌W) (13)

One of applications of Wiener filter is for removal of noise 
from a ''corrupted" signal. The particular situation we consider is 

this: there is some underlying, target signal c(t) that we want to 

obtain. The measured signal y(t) may contain an additional 
component of noise n(r),

y(t) = c(t) + n(t), (14)

Assuming the signal and the noise are uncorrelated, it follows 
that the power spectrum of the noisy signal is the sum of the 
power spectra of the target and the noise signal, resulting in,

Ryy (©) = RcC(©)+ Rnn(©), (⑸

and

^CY(©)= Rcc(©) , (16)

where &y(0),Rcc(©)and &四(©)are the power spectra of 

the noisy signal, the target signal and noise signals, re叩ectively. 

*5，仞)denotes the cross power spectrum of the target signal and 

noisy signal which has the same result of the power spectrum of 
the target signal as (16). The corresponding Wiener filter is

(D(©)= =Lc ㈣
^yy (以 Rcc 仞)+ Rnn 仞)- (17)

From equation (17) the following interpretation of the Wiener 
filter frequency response, in tenns of the signal to noise 
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ratio can be deduced. For additive noise, the Wiener filter 
frequency response is a real positive number in the range 0 

<4>(o?)<l. Now consider the two limiting cases of a noise-free 

signal, i.e., SNR= oo, and an extremely noisy signal SNR=0. At 
very high SNR, <!>(<v) - 1, and the filter applies little or no 

attenuation to the noise-free signal component. On the other 
extreme high noise case, with SNR=0,①(©)« 0. Therefore, for 
additive noise, the Wiener filter attenuates each frequency 
component in proportional to an estimate of the signal to noise 

ratio.
By equation (6), the output signal of FDICA can be 

decomposed into the sum of the straight component and crosstalk 
component which are assumed to be mutually independent. In 

addition, it can be assumed that the straight components have 
stronger energy than the crosstalk components after applying 

FDICA, i.e., the each output signal *(©) can be assumed to be 

target component in itself, and the output signals of the other 

channels can be assumed to be interference components 

匕(©),(/ = 0. Therefore, we propose the Wiener filtering 

technique in equation (17), as the post-processor of FDICA. 
Regarding the proposed post-processing method of FDICA, the 

residual crosstalk components are attenuated as proportional to 
the power spectral ratio of the straight components and crosstalk 
components spectra. The magnitude spectrum is used for 
obtaining the weight in the proposed method, and combined with 
the phase spectrum then transformed into the time domain to 
restore the signal.

For the signal Yr (tw), the following weight is adopted as (18).

也㈣一 切|匕仞)|2]
1 - 列匕(째勺+ 切|丫2 仞)|2 ] , (18)

Symmetrically, for the other signal 互(©),

e(©)_ 列匕(，깨2]
2 1硏时(©)|2]+司匕(쎄2]. (19)

Observing equation (18), if the components of 匕(©) are 

dominant and the components of 匕㈣ are weak, the target 
components can be preserved with little attenuation. If the 

components of 约㈣ are weak and the components of 匕(©) 

are dominant, the residual crosstalk components are drastically 

attenuated by the weight in (18). Conversely, it is vise-versa 

concerning the other signal Y2 (^)in equation (19). It is worthy of 
note that the proposed post-processing is available since the 

speech signal is usually sparsely distributed in the spectral 
domain [16].

The power spectra, 硏|匕«깨 ],。= 1,2), in equations (18) and 

(19), are estimated by a recursive first order lowpass filter as 
given by

忡㈣시七朮•(씨'(i沖㈣盘, (20)

where |R(©)| is an estimated power spectra, the k denotes a 

frame index, and the forgetting factor, p, controls the smoothness 
of the estimated power spectra. The estimated power spectrum by 

the lowpass filter is only used for updating weights, and then the 
weights are applied to each magnitude spectrum.

Fig. 1. represents the block diagram of the proposed method of 
2-input 2-output BSS system. In [14], the NLMS adaptive filter 

is used to estimate the residual crosstalk components then 

spectral subtraction (SS) is applied to remove the crosstalk.

Fig. 1. Block diagram of FDICA postprocessing using Wiener filter.

Fig. 2 shows the block diagram of NLMS method in which 

K (©) is assumed as a target signal. This method is similar to 
the study of BSS+GSC (generalized sidelobe canceller) algorithm 
[20], but the ideas are different and independently progressed.

Fig. 2. Postprocessing with NLMS adaptive filter and spectral subtraction 

to for estimating K⑴(f).

Accordingly, for the narrow band signal in each frequency bin, 

the crosstalk components in 匕㈣ can be approximated by the 
output of the filter whose input is the straight components of the 

signal 匕(勿).

The Wiener filtering technique can be considered as a subset of 
the LMS class algorithm, however, two post-processing 
algorithms are apparently different. While the NLMS post­
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processing is based on an adaptive updating algorithm, the 

proposed Wiener filtering technique is based on the weighting 
method by the ratio of the power spectrum of the target­
interference components.

IV. Computer Simulations

4.1. Simulation conditions
To examine the performances of the proposed method, the 

separation was performed by the Amari's FDICA algorithm [18]. 

Six sentences spoken by three males and three females were used 
as source signals. Each speech signal is recorded with an 8 
second length at a 16 kHz sampling rate. The frame length for a 
short time DFT is 1,024-tap as recommended in [12], the frame 

shift is 64 tap, the window function is a Hamming window, the 
number of epochs in FDICA is 30, and the step-size is set to be 

IxlO-4, as had the best separation perfonnance in our 

experiment. For NLMS post-processing, the filter length of 
NLMS was set as a 16-tap. The smoothing coefficient p in (20) 

is 0.998.
The energy decay curve r(r) of an impulse response h(t) is 

defined as follows: 

r 2 (/) =「h2 (t)dt.
(21)

The reverberation time Tr is defined as the time for an energy 
attenuation of -60dB.

The target component is assumed as a signal, and the 
difference between the output signal and target signal as a noise. 

The signal-to-interference ratio (SIR) in the time domain is 
defined as follows:

z*(이 2
S压三 lOlog—----------2 - lOlog一一----- T(dB)

W 次이 Mm씨

The averaged SIR of two channels is used as a performance 
evaluation of BSS in which the crosstalk components are 
assumed as noise.

To examine the effectiveness of the proposed method, two dry 
speech signals are convolved with impulse responses measured in 

a room. The layout of a room used to measure the speeches is 

shown in Fig. 3. Two reverberant times =512-tap^128msec 

and 竭=1,024 - tap « 256 msec) of impulse responses are used in 

experiment. For each reverberant time, we measured SIR's with 
nine combinations among the source signals. This experiment is 
made for noiseless condition.

Next, to be realistic condition, speech signals are recorded in 

the same room. We used “RT Pro Dynamic Signal Analysis" as 
a recording system made by “Co. Dactron^. To be proper tuning 
for the loudness of speech, the recording system is set as 0.3V 
maximum range. We measured SIR's with twelve combinations 
among the source signals.

5.80 m

Fig. 3. Layout of a room 니sed in experiments.

4.2. Simulation results
The results of SIR evaluation for 512-tap reverberant time are 

shown in Fig. 4. Both methods achieve a superior performance to 
conventional FDICA by about 3~4 dB. The average SIR of the 

proposed method is slightly improved by aboutl〜2dB compared 
to the output of FDICA. Fig. 5 shows results of SIR evaluation 

in 1,024-tap. Similarly, the proposed one has slightly higher gain 
about 1-2 dB to NLMS method.

Fig. 4. Comparison of SIR for FDICA and two postprocessing 
methods.(& = 128/nsec) 
X : observed signal,
Y : conventional FDICA, Ypp(W) : proposed method, 
Ypp(NLMS) : NLMS post-processing.
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Fig. 5. Comparison of SIR for ICA and two postprocessing methods.
(R「= 256m sec)
X : observed signal,

Y : conventi아lal FDICA, Ypp(W) : proposed method, 
Ypp(NLMS) : NLMS post-processing.

Next, the experiments are performed with speech signals 
recorded in a real environment. Before viewing the results of SIR 
evaluation, let investigate one example of narrow power spectrum 
of input and output signals of the proposed post-processor. Fig. 6 

(a) and (b) shows two input signals, Fig. 6 (c) and (d) are the 
output signals of the post-processor. The circles in the Fig. show 

the reduction of the interference components to each other. The 
components, which are assumed as the part of target signal, are 

alive, while the components, which are assumed as interference 
signal, are attenuated.

The results of SIR comparison are shown in Fig. 7. The 
separation performances are degraded than those of experiments 
with artificially convolved signals without noise, since the 

expenments with real-recorded signals are performed in noisy 
condition. The SIR of the proposed method is improved by about 
3~4dB compared to the output of FDICA. The proposed Wiener 
method have an improvement in SIR about l-2dB compared to 

NLMS post-processing.
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Fig, 7. Comparison of SIR with real recorded signals.
X : observed signal,
Y : conventional FDICA, Ypp(W) : proposed method, 
Ypp(NLMS) : NLMS post-processing.

We also compare the complexity of calculations between the 
NLMS post-processing method and the proposed method. Table 1 

represents the results of complexity of multiplications and 

additions at each iteration. While the quantities of addition 
operations are invariant, the proposed method has much less 

burdensome in multiplication operations. In our experiment, 
L=16, so that the proposed method achieves a drastic reduction 
of multiplications.
Table 1. Comparison of calculation complexity.

L : filter length of NLMS

Multiplication Ad 거 ition

NLMS 3L+2 2

Wiener 데ter 4 2

Fig, 6. Example of output signal power spectra of FDICA and the 
proposed method respectively (144-th bin among 1,024 
frequency bins), where the circles mean the reduction of the 
cross-talk components from (a)/(b) to (c)/(d).
(a) output 1 of FDICA (b) output 2 of FDICA (c) output 1 of 
Wiener filter (d) output 2 of Wiener filter.

V. Conclusion

In this paper, the frequency domain ICA of convolved mixtures 
is examined, and proposed a post-processing method using 
Wiener filtering technique. The proposed post-processing method 
reduces the residual crosstalk components of the output of 
FDICA. In the time-frequency domain, the speech has the sparse 
characteristics so it is possible to improve the independency of 
the output of the FDICA by the proposed method. The results of 
experiments showed that the proposed method can slightly 
improve the separation performance compared to the NLMS 
post-processing even with much less calculation burden.
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