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L-FUZZY GRADATION OF OPENNESS AND L-FUZZY
GRADATION OF PROXIMITY

TaPAS KUMAR MONDAL* AND S. K. SAMANTA™

ABSTRACT. In this paper we study lattice valued fuzzy gradation of openness so
that fuzzy gradation of openness [13] could be obtained as a particular case. Some
of its properties are studied. We also give definitions of lattice valued graded fuzzy
filters, graded fuzzy grills, graded fuzzy preproximities and proximities.

1. INTRODUCTION

In the definition of Chang’s fuzzy topology [1], fuzziness in the concept of open-
ness of a fuzzy subset is absent. The fundamental idea of a fuzzy topology with
fuzziness in the topology i.e.. a topology being a fuzzy subset of a powerset was first
appeared in a paper of Hohle [3]. Subsequently, different authors such as Kubiak
4], Sostak [11], Samanta, Chattopadhyay and Hazra [8,9], Ying [15], etc. developed
this idea independently. In {9], Samanta, Chattopadhyay and Hazra gave a concept
of gradation of openness as a mapping 7 : IX — I (I = the closed unit interval
[0,1]), satisfying the following axioms :

(1) 7(0) = (1) =1,
(2) 7(M N A2) > 7(A1) AT(A2),
(3) T(Vieari) > Nieat(N).

Dually gradation of closedness F is also defined and using this concept properties

of fuzzy closure operator was studied by Samanta and Chattopadhyay [10].
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On the otherhand, in [13], we introduced an idea of fuzzy gradation of openness
by using a concept of fuzzy family as defined by Sostak [11]. In fact we have defined
fuzzy gradation of openness as a mapping 7 : IX — I, where the arbitrary union
condition and finite intersection condition are taken over fuzzy families of fuzzy
subsets of X instead of crisp families of fuzzy subsets (which are taken for gradation
of openness), thereby enhancing the involvement of fuzziness in the definition of
fuzzy topology. We also extended this idea to generalized intuitionistic fuzzy setting
[12].

In this paper, firstly we extend the concept of fuzzy gradation of openness to
lattice valued setting. In fact, we define lattice valued fuzzy gradation of openness as
a mapping 7 : L* — L, where the arbitrary union condition and finite intersection
condition are taken over L-valued fuzzy families of L-fuzzy subsets of X instead
of crisp families of fuzzy subsets. We study the decomposition theorem of an L-
fuzzy topological space to a family of Chang-fuzzy topological spaces. Characteristic
properties of closure operator is also studied. We give the definitions of graded fuzzy
filters, graded fuzzy grills and graded fuzzy proximities and obtain relation between
a graded fuzzy proximity and a collection of graded fuzzy grills.

The organization of the paper is as follows:

Sections 1 and 2 consists of introduction and preliminaries respectively. In section 3,
we study lattice valued fuzzy gradation of openness and obtain its basic properties.
Definitions of graded fuzzy filters and graded fuzzy grills are given in section 4
and also their properties are studied. Lastly in section 5, we introduce definitions of
graded fuzzy preproximities and graded fuzzy proximities and study their properties.

2. PRELIMINARIES

Let (L, <) be a complete and completely distributive lattice with 0 and 1 as the
least and the greatest elements respectively and ’ be an order reversing involution.
Va € L, a is called the complement of a.

Following the definition of fuzzy family in {11}, we define L-fuzzy family, union

of L-fuzzy family and intersection of L-fuzzy family as given below:
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Definition 2.1. An L-fuzzy set G on the set LX i.e., a function G : IL*X — Lis
called an L-fuzzy family of L-fuzzy sets (briefly L-FF) of X.

Definition 2.2. Let G be an L-FF of X. Then the union of this L-FF is a function
VG : X — L defined by

(VO) () = Ve x (G(1) A p(2)).

Definition 2.3. Let G be an L-FF of X. Then the intersection of this L-FF is a
function AG : X — L defined by the equality

(AG) (@) = Auerx (G(1) V u(=))-

Notation 2.4. For a € L, & denotes the constant L-fuzzy set of X with value o
ie., &(z) = a, Vz € X. For A € LX, the L-fuzzy set A’ means the complement of
A. Further, we denote L \ {0} by Lo, L\ {1} by L1, L\ {0,1} by Lg1, the set of
all molecules of L by M (L) and the set of all prime elements of L by Pr(L). For an
L-FF G of X we denote

5(G) = {4 € L¥;G(4) > 0}.

Definition 2.5. An L-FF B of X is said to be a finite L-FF if for some positive
integer n,3 By, By, ..., B, € LX such that B(B;) >0, 1 <i<nand B(A) =0, if
AeLX \ {B],Bg, ...,Bn}.
If B(B;) = pi. 1 <i<n,then B is expressed as

s (BB B

Pl’Pz’ ’pn'

Definition 2.6. A lattice L is said to be order dense if for any r, s € L with
r<s, dt€ Lsuchthatr <t <s.

Definition 2.7 ([14]). Let L be a complete lattice. Then L is said to possess sup
property if for any PC L, VP > s=3pe Ps.t. p> s.

According to {2,7], we take the following definitions in L-fuzzy setting.

Definition 2.8. A stack of fuzzy sets S on X is a subset of LX such that A > pu €
S=>Xes.

Definition 2.9. A filter of fuzzy sets F on X is a non-empty stack of fuzzy sets on
X such that pyy, ps € F = py A g € F, Yy, po € L¥.
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If 0 ¢ F, then F is called a proper filter of fuzzy sets on X.

Definition 2.10. A grill of fuzzy sets G on X is a stack of fuzzy sets on X such
that
1) 0¢gG
(i) AVpeEG=>reGor p€G, V) pe LX.
If 1 € G, then G is called a proper grill of fuzzy sets on X.

Definition 2.11. Let F : L* — L be a mapping satisfying
@ F)=1
(i) F(A A A2) = F(A) A F(hg).
Then F is called a fuzzy filter on X. If F(0) = 0 then F is called a proper fuzzy
filter on X.

Definition 2.12. Let G : L*X — L be a mapping satisfying

(i) G(0)=0
(i) G(M VvV A2) =G(AM) VG(A2).
Then G is called a fuzzy grill on X. If G(I) = 1 then G is called a proper fuzzy
grill on X.

Definition 2.13. A mapping A : L* x L* — L satisfying
1) A=A
(2) A(\0) =0
(3) AN p1 Vv p2) = AN p1) V A(A, p2), is called a fuzzy preproximity on X.

Definition 2.14. A mapping § : LX x L* — L having the following properties is
called a fuzzy proximity on X:
(1) 6(0,1) =0,
(2) 6(Ap) = 6(p, ),
(3) 8(ALV Az, p) = 6(Ar, ) V (X2, 1),
(4) 6\ p) 27 = 6(cl(Ar),u) 2 r'. where

cd(\r)=ANn > A §(\n) Zr'}, re L.
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3. L-Fuzzy GRADATION OF OPENNESS

In this section, we give the definition of L-fuzzy gradation of openness and deduce
some of its basic results.

Definition 3.1. A mapping 7 : LX — L is said to be an L-fuzzy gradation of
openness (shortly L-FGO) on X if it satisfies the following axioms :
(L-FGO1) 7(0) = 7(1) = 1,
(L-FGO2) for any L-FF G of X,
7(VG) 2 Ases(g)(T(4) AG(A)),
(L-FGO3) for any finite L-FF B = {%—, %, s %;L of X,

T(AB) > Ny (7(Bi) A B(By)).

Definition 3.2. A mapping F : LX — L is said to be an L-fuzzy gradation of
closedness (shortly L-FGC) on X if it satisfies the following axioms :
(L-FGC1) F(0) = F(1) =1,
(I-FGC2) for any L-FF G of X,
F(NG) = Naes@)(F(A) AG(A)),
(L-FGC3) for any finite L-FF B = {2+, 22, Ba} of X,
F(vB) = N1 (F(Bi) A B(Bi))-
The pair (X, 7) (or (X,F)) is called an L-fuzzy topological space.

Definition 3.3. Let G be an L-FF of X. Then the L-FF G* of complemented
L-fuzzy sets of X is defined by G*(A) = G(A'), VA4 € LX.

Theorem 3.4 (Generalized De Morgan’s Laws). Let G be an L-FF of X. Then we
have
(a) [VG]' = rG",
(b) [AG) = vg~.
The proof is straightforward.

Remark 3.5. If 7 is an L-FGO on X then F; defined by F,(A4) = 7(4’) is an L-FGC
on X associated to 7. Similarly, for an L-FGC F on X the mapping 75 : LX - L
defined by 7r(A) = F(A') is an L-FGO on X associated to F. Further F,, = F

and 7, = T.
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Proof. Let 7 be an L-FGO on X. Then
(1) F©) =) =1, F{) = r(®) = 1.
(2)
Fr(AG) = T[(AG)']
=7[VG*] 2 Ases(gn[T(4) A G*(A)]
= Auresg)lFr(A') ANG(A)] (since A € S(G*) & A’ € 5(G))
= Ages(g)[F+(B) A G(B)).
(3) Let B = {%, %, sy %} be a finite fuzzy family. Then
fT(VB) = T[(VB)I]
= 7[AB*]
> AT (By) A B*(B))]

Ay [Fr (Bi) A B(B)).

Hence F; is an L-FGC on X.
Similarly, 77 can be shown to be an L-FGO on X associated to F.
The last part of the Remark is obvious. O

Remark 3.6. Every L-fuzzy gradation of openness (closedness) is a gradation of

openness (closedness). But the converse is not necessarily true (Remark 2.4 of [13]).

Theorem 3.7. A gradation of openness 7 on X is an L-fuzzy gradation of openness
on X iff

(cl) T(AANE) > 7(A) A, Y € Ly,

(02) T(A \ &) > T(A) A CY', Vo € Lg,l.

Proof. Suppose 7 is a gradation of openness satisfying (c1) and (c2). Let G be an
L-fuzzy family. Then

T(VG) = 7|V esgy (G(1) A )]
AuES(G)T(é_(\/t’j A lu')
Auesg)(G(p) A 7(p), by (cl).

v IV



L-FUZZY GRADATION OF OPENNESS AND L-FUZZY GRADATION OF PROXIMITY 77

For a finite L-fuzzy family B = {81 B2 Bu} of X,
P1’ P2 Pn

7(AB) = TINLy(Bi v B/(B)
TNy (B V 5]

v

NAT(BiV 7))
Ny (7(B;) Api). by (c2)
Ny (7(B5) A B(BY)).

v

I

Therefore 7 is an L-FGO.

Conversely, suppose 7 is an L-FGO. Then clearly 7 is a gradation of openness on
X. Let p € L* and a € Lo ;. Define an L-fuzzy family G, : LX = L by Gulp) =«o
and G,(v) =0, if v (# p) € L*X. Then

—

7(VGL) > Aces©,)Gu(CY AT(C)] & (1 AGu(k)) = [Gu(p) AT(1)]
& T(uAE) > aAT(p).

Again,
T(AGL) 2 Gu() AT() & T(rV G, (p) = Gulp) A7)
s 7(pVva)>ant(p).
Thus 7 is a gradation of openness satisfying (c1) and (c2). O

a2t Aaie, 7(@) > a

Remark 3.8. From (cl1) and (c2) we see that 7(1 A
) >aVao, Vae LO,l»

and 7(0V &) > 7(0) A i.e., 7(&) > o. Thus 7(&
Proceeding in a similar way as Theorem 3.7 we have the following:

Theorem 3.9. A gradation of closedness F on X is an L-fuzzy gradation of closed-
ness on X iff

(c3) F(AVa) 2 F(A)A, Ya € Ly;.

(cd) F(AVa) 2 F(A)ANA, Yae Ly,.

Remark 3.10. From (c3) and (c4) we see that F(1A&) > F(I) Aaie., F(a@) > a
and F(OV &) > F(0) Ad ie., F(&) > . Thus F(&) > aVd/, Va € Ly;.

Definition 3.11. Let 7 : LX — L be a mapping. For r € Ly, define 7, = {\ €
L%, () > r}.

Theorem 3.12. Let 7 be an L-FGO on X. Then {7, }rcL, is a descending family
of L-fuzzy topologies (Chang-type) on X satisfying
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(1) TVieAai = niEATai-
(2) A€T, => ANGE Toar aNd AV & € Typr, Ya € Ly .

Proof. Since T is an L-FGO, it is a gradation of openness and hence {7, }reL, is a
descending family of L-fuzzy topologies (Chang-type) on X.

To show condition (1), we observe that 7y, xq; C NieATq; 8 obvious.

Further, A € NicaTa; = T(A) > a4, Vi€ A = 7(A) > Vieat; = X € Tyepou- S50
NieaTo; C Tvicna;- HENCE Ty, pa; = NicATo;-

Next to show the condition (2), we see that A € 7, = 7(A4) > r. Then by (c1) and
(c2) of Theorem 3.7, we have 7(AAG) > T(A)Aa > rAa = ANG € Trpa, Vo € Lo.
and T(AVaE) > T(A)Ad > 17 Ao = AV @& € Typw, Va € Loy Hence {7 }rer,
is a descending family of L-fuzzy topologies (Chang-type) on X satisfying (1) and
(2). O
Theorem 3.13. Let {T,;r € Lo} be a descending family of L-fuzzy topologies
(Chang-type) on X satisfying conditions (1) and (2) of Theorem 3.12. Then the
mapping 7 : LX — L defined by

7(A) =V{r; Ae T}
is an L-FGO on X such that 7, = T, r € Lg.

Proof. From Proposition 2.2 of [5] 7 is a gradation of openness and it satisfies
Ty = Tr, re Lo.

Let 7(A) = p. If p = 0, then obviously (ct) and (c2) of Theorem 3.7 hold. If p > 0,
Then

AeT, = A€,
=> AAN& € Typp, Ya € Loa
= AAN&E Tarp, Ya € Loy, [88 Tanp = Tanp)
= 7(ANG) > aAp, Vac€ Ly,
= 7(ANG) > aAT(A), Vo€ Ly,.
Again,
Act, = AeT,
=> AV &€ Typp, Ya€ Ly

=> AVac Ta! Ap» V& € LO,l
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= T(A\/d) Zo//\p,_ Va € LO,l
= 7(AVa) > a AT(A), Va € Ly,.

Hence by Theorem 3.7, 7 is an L-FGO on X. O

Theorem 3.14. A gradation of closedness F is an L-FGC iff Ac F, == AV €
Fonrrs Ya € Loy and ANE € Fypy, Vo € Ly ;.

Proof. Let a gradation of closedness F be an L-FGC. Now A € F. = F(A) > r.
By Theorem 3.9, F(AV&) > F(A)Aa>rAa = AVE € Frpa, Ya € Ly and
FANSY> F(AAAS >1rAd = ANE € Fopy, Yo € Lp;.

Conversely, let a gradation of closedness F satisfies the given condition.

Let F(A) =r. Then

A€ F, = AVE € Fopa and ANE € Frpw
= F(AVE) > aArand F(AA)>d Ar
= F(AV&) > aAF(A) and F(AANE) > d AF(4), Va € Lo;.

Hence by Theorem 3.9, F is an L-FGC. O

Definition 3.15. Let 7 be an L-FGO and F (i.e., F;) be the associated L-FGC on
X. For M € LX, r € Ly define the r-closure of M by

cd(M.,ry=ANN >M; N € %}

Theorem 3.16 Let F be an L-FGC on X and for M € LX, r € Lg, cl(M,r) be
the r-closure of M, then M = cl(M,r) & M € F;.

Proof. M =c(M,r)=> M =A{N>M; NcF.} =>McF,.
Again M € F, =by definition of cl(M,r), M = cl(M,r).

Theorem 3.17. Let L be an order dense lattice, F be an L-FGC on X and cl(M, )
be the r-closure of M, M € LX, r € Lg. Then for My,My € LX, s€ Ly

(1) el(0,r) =0, cd(,r) =1,

(2) c(M,r) > M, VM € LX,

(3) cd(M,r)C cd(M,s), if r<s,

(4) (M1 V Ma,r) = cl(My,r)V cl(Ma,r),

(5) cl(cl(M,s),s) = cl(M,s),

(6) r =V{s € Lg; cl(M,s) =M} = c(M,r) =M,
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(1) M =c(M,r) = c(MVT,rAt)=cl(M,r)VE, Vt€ Ly, and
(M A, P ALY =cd(M,r) AT, Yt € Lgs.
Proof. From Proposition 2.12 of [5], proofs of (1)-(6) follow.
(7) By Theorem 3.16,

M = cl(M,r)
&S Me F,
= MVT € Fipr & MAE € Fypr, VL€ Lo
= cdMVEtAT)=MVE & d(M AT HAT) = M)\t", vVt e Ly

=AMV tAT)=cd(M.r)VE & d(M AT H Ar)=cd(M,r) AT, Vi€ Ly
g
Theorem 3.18. Let ¢l : LX x Ly — LX be a mapping satisfying (1)-(7) of Theorem
8.17. Then the mapping F : L*X — L defined by
F(M) =V{r € Ly; cl(M,r) =M}

is an L-FGC on X such that clr = cl.
Proof. By Proposition 2.13 of [5] F is a gradation of closedness on X and clr = cl.
To show F is an L-FGC let for r € Ly, A € F,. Then F(A) > rie,l = V{t e
Lo; cl(A,t) = A} > r. By (6), cl(A,1) = A. So, cl(A,r) = A.
By (7) of Theorem 3.17, we get

cAd(AVi,rat)y=cl(Ar)VE =AVT, Vt€ Lo
and

(ANT T AE) =cl(A,r) AT = AANT, Vit € Ly,.
Hence AV 1Y € Fopy & ANY € Fopp, YVt € Lgy. Therefore F is an L-FGC (by
Theorem 3.14). ' O

4. GRADED Fuzzy FILTER AND GRADED Fuzzy GRILL

In this section definitions of graded fuzzy filters and graded fuzzy grills are given

and some of their properties are studied.
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Definition 4.1. Let X be a set. A mapping S : LX — L satisfying S(A1) > S(\2)
for Ay > Aq is called a graded fuzzy stack on X.

Definition 4.2. Let F : LX — L be a mapping satisfying
AL A
f( A {—1, —2}> = [p1 V F(A)] A [py V F(A2)], p1, p2 € Lo.
D1 P2
Then F is called a graded fuzzy filter on X. If F satisfies the condition F(0) = 0

then F is called a proper graded fuzzy filter on X. Let ¢(X) denote the set of all
graded fuzzy filters on X.

Remark 4.3. From the condition of Definition 4.2, we have, in particular,
f( A {%}) = p'VF(), Yp€ Loy,
ie., F# vi) =9 vF(), Vpe€ Ly,
ie, F(I)>p, Vpe Loa
e, F(1) > Vv{p; pe Lo}
Hence F(1) = 1.

Definition 4.4. Let G : LX — L be a mapping satisfying
AL A
g( v {—1, —2}> = [p1 AG(A)]V [p2 AG(A2)], P1.p2 € Lo.
P p2
Then G is called a graded fuzzy grill on X. If G satisfies G(1) = 1 then G is called

a proper graded fuzzy grill on X. Let I'(X) denote the set of all graded fuzzy grills
on X.

Remark 4.5. From Definition 4.4, we have, in particular,

g(v{%}) = pAG(0), Ype Loy,

i.e., g(ﬁ A 6) =pA G(f)), Vp € Lg’l
ie., .g(()) <p, Vpe Ly,

therefore, G(0) < A{p; p € Lo.1}. Hence G(0) = 0.

Definition 4.6. A mapping U : LX — L is called a graded fuzzy prime filter on X
if U is a graded fuzzy filter as well as a graded fuzzy grill on X.
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Theorem 4.7. A fuzzy filter F on X is a graded fuzzy filter on X iff
f(A Va)= f()\) Va, Va € LO,l-

Proof. Let F be a fuzzy filter satisfying the given condition. Suppose {;\)41, ;—;} is an
L-fuzzy family of X. Then

A1 A
f(A{—l,—?-}) = FI, v ) A (5 V 2o)]
D1 P2
= F(BL V M) AF(Py V A2), since F is a fuzzy filter
= [F(A) Vi A [F(A2) V ph), by the given condition.

Hence F is a graded fuzzy filter.
Conversely, let F be a graded fuzzy filter on X. Clearly, F is a fuzzy filter. Since
{% 1} is an L-fuzzy family, we have
A i ! ! T
e F@VIADBVI)]=[dvFNAFI)
& F@ VvA)y=d VFQ).
Remark 4.8. We have from above theorem
FOva) =F0)Va, Ya€ Ly;.
So, for a proper graded fuzzy filter F, F(&) = o, Y € Ly, .
Definition 4.9. Let F : LX — L be a graded fuzzy filter on X. Define
Fo={reLlX, F\) gm'}, me Lo,;.

Theorem 4.10. Let F : LX — L be a graded fuzzy filter on X. Then {Fp}meLos
is an ascending family of stacks of fuzzy sets on X such that

(1) Fo. is a filter of fuzzy sets on X, Ym € M(L),
(2) UnEAfan = fvnan, an € LO,ly
(3) A ¢ Fm & AV éa ¢ }-m/\a’a ‘v’m,a (S LO,l-
Proof. Clearly F,,, YVm € Lg is a stack of fuzzy sets on X. Let m > n. Then
AEFn=>FN En' = FQA)Em = A€ F.

So, Fp, C Fp if m > n, where m,n € Lg ;.
Since F(1) =1 £ m’/, Ym € M(L), therefore 1 € Fp,, Ym € M(L).
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Let A\1. A2 € Fp- Then
Fh) €m!, Fo) £m'.

So,
F(M Adg) = F(A)AF(A) £ml,
as
me M(L) = A Adg € Frpy, m€ M(L).
Clearly
UneaFan C Funan-
Next
A€ Fupay = F(A) £ Anenc,
= F(A) £ ap,,, for some n, € A
= A € Fu,, C UneaFa,-
Therefore,
Funan C UneaFay, -
So,

UneaFan = Funan> 0n € Lo1.
Lastly, A ¢ F,,, = F(\) < m/. From Theorem 4.7,
FAVa) = FAO)Vas<m'Va
= AVa& ¢ Fra, Ym,a € Loy
Conversely, Vm,a € Lo,
AVaE ¢ Fora = FAVA) <m' Va
= FA)Va<m'Va
= AaeLg; (F(N) V@) < AgeLo, (m'V @)
= F(A) V (AaeLo @) <MV (AaeLy, @)
= FA)vo<m' V0
= F(\) <m
= A& Fp,.
So,
A F, & AVaEE Fruna, VM. a € Lo;.

83
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Hence, {Fm}mem(r) is a ascending family of filters of fuzzy sets on X satisfying
(1) and (2). 0

Theorem 4.11. Let {Fin}meL,, be an aécending family of stacks of fuzzy sets on
X satisfying conditions
(1) Fim is a filter of fuzzy sets on X, Ym € M(L),
(2) UneaFa, = Funan, an € Loa
B) A& F, © AV & ¢ Funa, Ym,a € Ly . then the mapping f : LX — L
defined by
f) = A{m’ € Pr(L); A ¢ Fin}
is a fuzzy filter on X with f,, = F,,, m € Ly ;.
If, further, the condition
(4) For 8 € M(L) and a € Loy, B £ o = & € Fp is satisfied then f is a
graded fuzzy filter on X.

Proof. Since Fp,, Ym € Lp; is a non-empty stack of fuzzy sets, so l1e F,, Yme
Lo1. Therefore, F(1) ¢ m’, Vm € Lo;. Therefore, f(1) = 1.
Let AAp ¢ F. Then X ¢ Fp,, or p ¢ Fpp, (since F, is a filter of fuzzy sets for

m € M(L)), i.e., F(AAp) > fF(A) A ().
Again A ¢ F,, = AAu ¢ F, (since F,, is a stack of fuzzy sets), i.e., f(A) >

S(AA ). Similarly, f(u) > f(AA p). So, fF(AA p) < f(A) A f(p). Hence
fAAp)=FR)A fp).
Now, A ¢ Fn © f(A) <m' & X ¢ frn. Therefore Fp, = fr, m € M(L).
Next, let m € Ly;. Since M(L) is join-generating 3 {a;; ¢ € A} C M(L) such
that Vieaa; = m. Then
A¢gFm & A Fy,, VIiEA
= f(A) <o, VicA
= f(A) < Niead = (Viea;) =m’
> A¢ fm
= A ¢ fia
=> A¢ fo, ViEA
= A¢ Fo. VieA
= A ¢ UiFo, = Fria; = Frm-
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Hence
Fm = fm, Ym € Ly ;.

Let f(A) = p and let p = 0.Then A\ ¢ F,,,, Ym € Lo, therefore, AV & € Frupnar =
fmnats YMmya € Loy = fAVEA) <m'Va= f(AVaE) < (Apemaym’) Va=0Va
By condition (4), 0Va = a < f(&) < f(AVa) < 0va, ie., f(AVa) = 0va = f(A)Va.

Next let, f(A\) =p=1. Then f(AV &) > f(A) =1. So,

fAva)=1=1va=f(A)Va.
Lastly, let, f(A) = p, where 0 < p < 1. Then
A¢ fp ©AVad fora, Vp, 0 € Lo,
s fAva) <P Ad)Y =pVa, Vp, a € Ly,
& FOOWVE) < FINVa, Yo € Lo (i)
Now, f(AV &) > f(&) > « (by condition (4)) and f(AV &) > f(A).
So,
FOVE) 2 FA)V Qi (i1)
By (i) and (ii),
fOva)=f(A)Va, Vae Ly;.
Therefore f is a graded fuzzy filter on X. 0

Theorem 4.12. A fuzzy grill G on X is a graded fuzzy grill on X iff
g()\ A c"v) = Q()\) ANa, Yoo € Ly ;.

M A

Proof. Let G be a fuzzy grill satisfying the given condition. Suppose { o

}is an
L-fuzzy family of X. Then
AL A ~ -
o(v{21,221) ~ glu A v (2 A )
D1 P2
= G(P1 A M) VG (P2 A A2), since G is a fuzzy grill
= [G(A1) Ap1] V [G(A2) A p2], by the given condition.
Hence G is a graded fuzzy grill.

Conversely, let G be a graded fuzzy grill on X. Then clearly, G is a fuzzy grill.
Since {%} is an L-fuzzy family, we have

g(v {2}) ~ @ AGOY)]
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& G(EAN =aAG(N), Vae L.

Remark 4.13. We have from above theorem
Ggirna)=G(1)Aa, Ya€ Ly;.

So for a proper graded fuzzy grill G, G(&) = a, Ya € Ly .

Definition 4.14. Let G : L*X — L be a graded fuzzy grill on X. Define
Gm={AeLX; G\ >m}, m€ Lo,.

Theorem 4.15. Let G : LX — L be a graded fuzzy grill on X. Then {Gm}meL,, 18
a descending family of stacks of fuzzy sets on X such that

(1) G is a grill of fuzzy sets on X, VYm € M(L),

(2) MneAYan = Gvnan, where a, € LO,l;
(3) A€ gm SANGE gm/\cu Vma « € L0,1~

Proof. Let m > n. Then

/\69m=>g()\)Zm2n=>)\€Gn=>ngQn-

Next
ADpPEGL=G(p)>m=G(A\)>m=XE€ Gy
Hence {Gm}meL,, is a descending family of stacks of fuzzy sets on X.
Since § is a graded fuzzy grill, so G(0) = 0. Therefore 0 ¢ Gy, ¥m € Lo ;.
Let A\ V A2 € G,,,. Then
GA1VA) > m
= G(A1) V G(A2) > m, since G is a graded fuzzy grill
= G(A\1) >mor G(X2) >m, asm € M(L)
= A\ € G, or A3 € Gy
Hence G, is a grill of fuzzy sets on X, Ym € M(L).
Clearly
mnEAgan o gv"an-
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Let A € NpeaGa,. Then
AEG, nEA = G(A)2>a,, VneA
= G(A) > Vpeaoy
= A€ Gvpcaan
= NneaYan C Gvnom-
Therefore
NneaYon = Gvnan-
Lastly, A € G = G(A\) > m. From Theorem 4.12,
GANG) = GA) Aa
= GANa)>mAa
= AAN& € Gppa, Ym, o € L.
Conversely, Ym, o € Lgs
ANGEGmra = GOANG) >MmA
= G(A) Aa > mAa, by Theorem 4.12
= VaeL (G(A) A @) > VaeLy,, (M A )
= G(A) A (VaeLo 1 @) 2 M A (VaeLo, @)
=GMA1>mAl
= g(A)>m
= A€ Gy,

SO, AeEGn & ANGE gm/\cm Vm, a € L0,1~ O

Theorem 4.16. Let {Gn}mer,, be a descending family of stacks of fuzzy sets on
X satisfying
(1) Gy, is a grill of fuzzy sets on X, Ym € M(L),

(2) Mneaban = Gvnans on € Loy,
(3) A€ gn), S ANQE gm/\a, Vm, A LO.l'

Then the mapping g : LX — L defined by
g Ay =v{me M(L); A € Gn}

is a fuzzy grill on X with gn, = Gm, Ym € Lg;.
If, further, the condition
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(4) ae€Gs=>8<a, a€ Ly, 3€ M(L) is satisfied, then g is a graded fuzzy
grill on X.

Proof. Since 0 ¢ G,, ¥m € M(L), it follows that g(0) = 0. Now,

B DO XE G = u € Gy, (by the stack property of Gp,)
So,

{m; pegGn}>{m; A€ Gy}

Thus g(u) 2 g(A). Then g(AV p) = g(A) V g(u). Now, ‘

AVUPEG, =>AEGy or p€ Gy = g(A)Vg(p)>m.
Therefore

gV ) =Vv{m; AV pe€ Gy} < g\ Vg
So,
gAV 1) = g(A) v g(p).

For m € Loy, let g, = {A € LX; g(\) > m}. Then, clearly, {gm}mero, is a
descending family. '

Next, let B € g,. Then g(B) > m = V{s€ M(L);B€ Gs} >m. Let S={s €
M(L); B € Gs}. Then B € NyesGs = Guysisesy C Gm, since V{s;s € S} > m and
{Gm}meLo, is a descending family. So, g C G, Again,

AeGn=9(A)>2m=>A€gn=>GnC gm.
Hence
: 9m = Gm, Ym € M(L).

Next, let m € Lo ;. Since M(L) is join-generating 3 {c;; 1 € A} C M(L) such

that Vieaq; = m. Now

AEGm & A€EG,,, VieA

= g(A) > ay VieA
= g(A) > Vieaa; = m
= A€ gm
= A€ go;, Vi€ A, since {gm}meL,, is a descending family
= X € Gy, Vi€ A, since o; € M(L)
= X € NieaGa; = Gvio; = Im
= ANE Gy,
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Hence
Gm = gm, Vm € Lo;.

Hence g is a fuzzy grill on X with g, = Gp,, Ym € Lg ;.

Next, let g(A) = p. If p =0, then g(A\) =0 = V{m € M(L); A€ G,}.
Then g(AA &) < g(A) =0=0Aa=g(A) Aa. Again gA) Aa=0<g(AAa&).
Therefore, in this case, g(AA &) = g(A\) A e, YVa € Ly ;.

If p=1, then

gA) =1 = A€ gm, Yme M(L)
= AAG € ganm, Ym € M(L) (by (2))
= g(AAE) > aAm, Vme M(L)
= gAAG) > aA (Vpempym) =aAl
= g(AAE) > g\ ANa, Ya € Ly;.
Again,
g(AAN&) < g(A) A g(&) (by fuzzy stack property)
< g(A) A a (by condition (4)).
Therefore,
gANE) =g(A)Aa, Ya € Ly;.
Lastly, if o, p € Lp1, then
/\Egp R4 )\/\&ega/\p
& gAAd)>aAp
S gAANE) 2 aAGA) (2)

Next,
9(AN &) < g(&) S o, (by (4)) and g(A A &) < g(A).
So,
GANE) S GV A Qe (i1)
From (i) and (ii) we have g(A A &) = g(A) A a. Hence g forms a graded fuzzy grill
on X. 4
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5. GRADED Fuzzy PROXIMITIES

In [7], definition of a fuzzy proximity was introduced and some of its properties
were studied in I-fuzzy setting. Further works on fuzzy proximities were done in [6].
In this section we introduce definitions of graded fuzzy preproximities and graded
fuzzy proximities on X in L-fuzzy setting and study some of their properties.

Definition 5.1. A mapping 8 : LX x LX — L satisfying
(1) 6(»,0) =0,
(2) 6(A 1) = 8(u, A),
(3) 8(v %’ %}’ﬂ) = [p1 A6, )]V [p2 A 6(A2, 1)), P1,P2 € Lo
is called a graded fuzzy preproximity on X. Set of all graded fuzzy preproximities
on X is denoted by m(X).
Definition 5.2. For § € m(X), A € LX, define §(\) : LX — L by

SN () = 6(\ ), Vpe L*.

Theorem 5.3. A mapping § : LX x LX — L is a graded fuzzy preprozimity on X
iff the following conditions hold:

(1) 6(x 1) = 6(u,9),

(2) ¥ € LX, §()) € T(X).

Proof. Let 6 be a graded fuzzy preproximity on X. Then
(v i) = n))
D1 P2 1 P2

= [p1 A SO M)V [p3 A (A, M)
= [ AS)D]V [p2 A S (M)

Thus
5(A) e I'(X).

Conversely, let the conditions hold. Then 6 = §=! and since §()\) € I'(X),

therefore we have

s (V{222 = 1 A SV 2 A0

P D2
e
pP1 P2

= [P AS(L AV [p2 A S(A, M)
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Also we have from Remark 4.5,
5(\)(0) = 0= §(1,0) = 0.
Thus § forms a graded fuzzy preproximity. .

Definition 5.4. A mapping p : LX x LX — L having the following properties is
called a graded fuzzy proximity on X:

(P1) p(&,&') =0,

(P2) (/\ 1) = p(i, A),

(P3) p(V{3L, ,,2} 1) = [p1 A p(Ar, W]V [p2 A p(A2, )], p1,p2 € Lo

(P4) p(\, u) 27" = p(cd(A,r),p) # 7', where

cd(Ar)=An" > X p(An) 2 '}, € Ly
Remark 5.5. Evidently a graded fuzzy proximity is a fuzzy proximity.

Theorem 5.6. Let p be a graded fuzzy prozimity on X. Then cl(A,r): LX x L1 —
LX defined in (P4) satisfies the following:

(cll) cd(a,r)=@&, YVae L

(€12) c(A,r) > A,

(c13) c(Ar) <cl(Xs), if r<s,

(c4) cl(Xr) <cl(p,r), if A< p,

(e1BY cl(M V dg,r) = c(M,r) Vel(da,7), if r € Pr(L),

(c16) cl(cl(A,r),r) = (A7),

@) A=d\r)=dAVa,rAa)=cd\r)VE, ifre Pr(L) and

dANE T Ad)=cd(M\T)ANE, Ya€ Lp;.

Proof. Proofs of (cl1)-(cl4) are obvious.

(c1d): (M VA, Yy =AM 2 A1V A p(AMV Ag,n) 27}, 1€ L.
Obviously,

c(A1V Ag, 1) > c(A1,7) V cl( A, ).
If possible, let, cl(Ay V A2, 7) € cl(A1,7) V cl(A2,7). Then 3 zo such that
c(A1 V Ag,r) (o) £ (A1, 7) (o) V cl(Ag,7)(z0).
Since M (L) is join generating 3 s € M (L) such that
cl(A1 V Az, m) (o) > s £ cl(A1,r) (=) V el(Ag, ) (o).
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Again
s £ cl(A1,r)(zo) V cl(A2, 1) (o) = s £ el(Ay,7)(20)
and
s £ cl(Xa,r)(wo) = 1 < A such that p(X;,m;) 2 ' and s € ni(zo), i = 1,2
Put 7 =mn; Ang. Then n < (A1 V A2) and
p(AV A2} = p(A1,m) V p(A2,n)
< p(A1,m) V p(A2,m2) 2 7' (since r € Pr(L)).

Now,

' (o) = my(z0) V M(z0) # s (since s € M(L) and s £ n}(xo), i = 1,2).
Therefore

el(M VA2, r)(zo) < 1'(wo) # 5= cl(M V Ag,7)(x0) # 5, a contradiction.

Hence (cl5) holds.
(c16): We have

(A7) =vin; n <X, p(An) # '}

Then

(V{m n <X, p(Am) 27D A (M 7))

< Vi{n < (d(r )Y plel(Ar),m) £ '}, (by pd).
So,

(A )" A eb(A, 7)) < (ellel(A,r), 7))
i.e.,
cd(r,r) > del(A.r),r).

So, by (cl2),

c(el(Mr),r) =c(\ ).
(c17): Let A = cl(A\,7). Then ‘
d(AVa,rAa) > AVE, (by (cl2)
cd(Ar)va

I
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Now,

Hence,

Again,

Also,

Similarly,

Therefore,

Hence,

d(AVvéa,rha) < cd(AVE,r), (by (cl3))
cd(\r)Ve(d,r), (by (cl5))
= (A7) V&, (by (cl1)).

d(Ava,rAa)=c\r)Va.

d(ANd,TAd) > AAE, by (cl2))
=cd(\T)AE.

d(AANE,r Ad) < (A7), (by (cl3) and (cl4)).

dAANE,rAdy <@ .r) =&, (by cll)

dAANE,rAd) <cd(A\T)ANE.

AMANE, rAd)=cd(\T)ANE.

CONCLUSION

In this paper, by using the concept of L-fuzzy family, the ideas of graded fuzzy

filters, graded fuzzy grills, graded fuzzy preproximities and graded fuzzy proximities

are introduced and some of their properties are studied. By doing so the involvement

of fuzziness in those structures are enhanced. In our next paper, further studies on

graded fuzzy proximities will be done.
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