DOI QR코드

DOI QR Code

Effect of UV-B on fatty Acid Composition, Lipid Peroxidation and Polyamine in Kidney Bean(Phaseolus vulgaris L.)

UV-B가 강낭콩(Phaseolus vulgaris L.)의 지방산 구성, 지질과산화 및 polyamine 함량에 미치는 영향

  • Kim Hak-Yoon (Department of Environmental Studies, Keimyung University)
  • Published : 2006.06.01

Abstract

To investigate the effects of UV-B on fatty acid composition, lipid peroxidation and biochemical defense responses of plant, kidney bean (Phaseolus vulgaris L.) was subjected to enhanced UV-B irradiation [daily dose : 0.02.(No UV-B) and 11.36 (enhanced UV-B) $kJ\;m^{-2};UV-B_{BE}$] for 3 weeks. UV-B drastically inhibited both height and dry weight of kidney bean. The content of malondialdehyde significantly increased by about 50% after 3 weeks of UV-B irradiation. The ratio of unsaturated to saturated fatty acids of kidney bean was increased by UV-B irradiation. Three major polyamines of kidney bean leaves : putrescine, spermidine and spermine, were observed. All of the polyamine contents were increased with UV-B irradiation. These results suggested that enhanced UV-B radiation caused oxidative stress on lipids and biochemical protection responses might be activated to prevent from damaging effects of oxidative stress generated by UV-B irradiation.

UV-B에 의한 강낭콩 식물의 피해양상, 지질과산화, 지질조성 변화와 UV-B에 대한 식물의 방어기작 등을 조사하기 위하여 3주간 UV-B 조사 실험을 수행하였다. UV-B 처리에 의해 초장이 약 22% 정도 감소하는 것으로 나타났다. MDA 함량은 UV-B 처리에 의해 약 50% 정도 증가하는 것으로 나타났다. Glutathione 및 ascorbate acid 함량은 UV-B 조사에 의해 산화형이 증가하고 환원형이 감소하는 것으로 나타났다. UV-B 조사에 의한 지방산 구성 변화를 조사한 결과 당지질 및 인지질 모두 UV-B조사에 의해 포화지방산이 증가하는 것에 반해, 불포화지방산이 감소하는 것으로 나타났다. 강낭콩 잎에는 주로 3종류의 polyamine이 존재하는 것으로 나타났으며, 3종류 모두 UV-B 조사에 의해 증가하는 것으로 나타났다. 본 실험 결과로 볼 때, UV-B 조사는 활성산소를 생성하여 생체막 지질에 직접적인 영향을 미치는 것으로 나타났으며, ascorbate acid, glutathione, polyamine 등의 항산화물질들이 이에 대한 피해를 최소화하기 위하여 작용하는 것으로 나타났다.

Keywords

References

  1. An, L., H. Feng, X. Tang and X. Wang. 2000. Changes of microsomal membrane properties in spring wheat leaves (Triticum aestivum L.) exposed to enhanced ultraviolet-B radiation. J. Photochem. Photobio. 57, 60-65 https://doi.org/10.1016/S1011-1344(00)00077-4
  2. Bjorn, L. O. and T. M. Murphy. 1985. Computer calculation of solar ultraviolet radiation at ground level. Physiol. Veg. 23, 555-561
  3. Bolin, D. W. and L. Book. 1974. Oxidation of ascorbic acid to dehydroascorbic acid. Science 106, 451
  4. Caldwell, M. M. 1971. Solar UV radiation and the growth and development of higher plants. pp. 131-177. In Photophysiology (Giese, A. C. ed.). Vol. 6, Academic Press, N.Y
  5. Dai, Q., V. P. Coronel, B. S. Vergara, P. W. Barnes and A. T. Quintos. 1992. Ultraviolet-B radiation effects on growth and physiology of four rice cultivars. Crop Sci. 32, 1269-1274 https://doi.org/10.2135/cropsci1992.0011183X003200050041x
  6. Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Ann. Rev. Plant Physiol. 33, 73-96 https://doi.org/10.1146/annurev.pp.33.060182.000445
  7. Foyer, C. H., P. Descourvieres and K. J. Kunert. 1994. Protection against oxygen radicals an important defense mechanism studied in transgenic plants. Plant Cell Environ. 17, 507-523 https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  8. Groppa, M. D., L. T. Maria and M. P. Benavides. 2001. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci. 161, 481-488 https://doi.org/10.1016/S0168-9452(01)00432-0
  9. Heath, R. L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. 1. Kinetic and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189-198 https://doi.org/10.1016/0003-9861(68)90654-1
  10. Kim, H. Y., I. J. Lee, D. H. Shin and K. U. Kim. 1998. Effects of different UV-B levels on the growth, photosynthesis and pigments in cucumber (Cucumis sativus L.). Kor. J. Life Sic. 8, 272-278
  11. Kim, H. Y., K. Kobayashi, I. Nouchi and T. Yoneyana. 1996. Differential influences of UV-B radiation on antioxidants and related enzymes between rice (Oryza sativa L.) and cucumber (Cucumis sativus L.) leaves. Environ. Sci. 9, 55-63
  12. Kramer, G. F., H. A. Norman, D. T. Krizek, R. M. Mirecki. 1991. Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipid in cucumber. Phytochemistry 30, 2101-2108 https://doi.org/10.1016/0031-9422(91)83595-C
  13. Law, N. Y., S. A. Charles and B. Halliwell. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and paraquat. Biochem. J. 210, 899-903 https://doi.org/10.1042/bj2100899
  14. Madronich, S., R. L. Nckenzie, M. M. Caldwell and L. O. Bjorn. 1995. Changes in ultraviolet radiation reaching the earth's surface. AMBIO 24, 143-152
  15. Norman H. A., D. T. Krizek and R. M. Mirecki. 2001. Changes in membrane lipid and free fatty acid composition during low temperature preconditioning against $SO_2$ injury in coleus. Phytochemistry 58, 263-268 https://doi.org/10.1016/S0031-9422(01)00242-4
  16. Tevini, M. 1990. Molecular biological effects of ultraviolet radiation. pp. 125-154. In UV-B radiation and ozone depletion. Lewis Publisher
  17. Velikova, V., I. Yordanova and A. Edrevab. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci. 151, 59-66 https://doi.org/10.1016/S0168-9452(99)00197-1
  18. Walters, D. R. 2003. Polyamines and plant disease. Phytochemistry 64, 97-107 https://doi.org/10.1016/S0031-9422(03)00329-7

Cited by

  1. Effect of Simulated Acid Rain on Fatty Acid Composition and Antioxidant System in Garden Balsam(Impatiens balsamina L.) vol.31, pp.2, 2011, https://doi.org/10.5660/KJWS.2011.31.2.152
  2. Effects of UV-B Radiation Timing on Growth and Antioxidants in Edible Flower Pansy vol.26, pp.3, 2018, https://doi.org/10.11623/frj.2018.26.3.03