DOI QR코드

DOI QR Code

Construction of hsf1 Knockout-mutant of a Thermotolerant Yeast Strain Saccharomyces cerevisiae KNU5377

고온내성 연료용 알코올 효모균주 Saccharomyces cerevisiae KNU5377에서 HSF1 유전자의 변이주 구축

  • Kim Il-Sup (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Yun Hae-Sun (Department of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institute of Health) ;
  • Choi Hye-Jin (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Sohn Ho-Yong (Department of Food and Nutrition, Andong National University) ;
  • Yu Choon-Bal (Department of Food Science and Engineering, Daegu University) ;
  • Kim Jong-Guk (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Jin Ing-Nyol (Department of Microbiology, School of Life Sciences and Biotechnology, Kyungpook National University)
  • Published : 2006.06.01

Abstract

HSF1 is the heat shock transcription factor in Saccharomyces cerevisiae. S. cerevisiae KNU5377 can ferment at high temperature such as $40^{\b{o}}C$. We have been the subjects of intense study because Hsf1p mediates gene expression not only to heat shock, but to a variety of cellular and environmental stress challenges. Basing these facts, we firstly tried to construct the hsf1 gene-deleted mutant. PCR-method for fast production of gene disruption cassette was introduced in a thermotolerant yeast S. cerevisiae KNU5377, which allowed the addition of short flanking homology region as short as 45 bp suffice to mediate homologous recombination to kanMX module. Such a cassette is composed of linking genomic DNA of target gene to the selectable marker kanMX4 that confers geneticin (G418) resistance in yeast. That module is extensively used for PCR-based gene replacement of target gene in the laboratory strains. We describe here the generation of hsf1 gene disruption construction using PCR product of selectable marker with primers that provide homology to the hsf1 gene following separation of haploid strain in wild type yeast S. cerevisiae KNU5377. Yeast deletion overview containing replace cassette module, deletion mutant construction and strain confirmation in this study used Saccharomyces Genome Deletion Project (http:://www-sequence.standard.edu/group/yeast_deletion_project). This mutant by genetic manipulation of wild type yeast KNU5377 strain will provide a good system for analyzing the research of the molecular biology underlying their physiology and metabolic process under fermentation and improvement of their fermentative properties.

출아효모인 Sacharomyces cerevisiae S288C균주를 이용한 효모의 게놈이 완성된 후 S. cerevisiae는 다양한 연구 모델로 이용되어져 왔다. 현재까지 효모를 이용한 기능 유전체학 측면에서의 연구는 laboratory strainin인 S288C 균주 또는 그 유래의 균주들이다. 그러나 자연에서 분리된 효모 또는 산업적으로 이용되어지고 있는 S. cerevisiae의 유전학 측면에서의 연구는 낮은 포자형성률 및 형질전환률, 그리고 S288C 균주와의 게놈상의 상이성 때문에 거의 이루어지지 않고 있다. 여기서 우리 연구진은 자연에서 분리된 Saccharomyces cerevisiae KNU5377 균주를 이용하여 random spore analysis를 통해 MATa 및 $MAT{\alpha}$ 타입의 각각의 haploid cell을 분리 후 이미 보고된 KanMX module를 가지고 round PCR기법에 의한 short flanking homology 기법을 이용하여 전사조절인자인 HSF1 유전자가 치환된 변이주를 구축할 수 있었다. 덧붙여, 모든 유전자에 이 기법을 적용할 수는 없다는 것을 확인하였다. 앞으로 이 변이주를 통해 기능 유전체학적인 측면에서 이 유전자의 스트레스와의 관련성을 연구하고자 한다.

Keywords

References

  1. Choi, Y. H., J. B. Kim, W. S. Yang, W. T. Shi and C. W. Hwang. 2004. Expression of recombinant Korean mistletoe (KM) lectin and B genes in Saccharomyces cerevisiae. Kor. J. Life Sci. 14, 840-846 https://doi.org/10.5352/JLS.2004.14.5.840
  2. de Winde, J. H. 2003. Functional genetics of industrial genetics. Springer-Verlag Berlin Heideerg, NY
  3. Gietz, R.D. and R.A. Woods. 2001. Genetic transformation of yeast. BioTechniques 30, 816-831
  4. Gimeno-Alcaniz, J.V. and E. Matallana. 2001. Performance of industrial strains of Saccharomyces cerevisae during wine fermentation is affected by manipulation strategies based on sporulation. Syst. Appl. Microbiol. 24, 639-644 https://doi.org/10.1078/0723-2020-00066
  5. Kim, H. C., C. K. Lim, B. W. Kim, S. J. Jeon and S. W. Nam. 2005. Surface display of Bacillus CGTase on the cell of Saccharomyces cerevisiae. Kor. J. Life Sci. 15, 118-123 https://doi.org/10.5352/JLS.2005.15.1.118
  6. Kim, I. S., H. S. Yun, H. Shimisu, E. Kitakawa, H. Iwahashi and I. Y. Jin. 2005. Elucidation of copper and asparagine transport systems in Saccharomyces cerevisiae KNU5377 through genome-wide transcriptional analysis. J. Microbiol. Biotechnol. 15, 1240-1249
  7. Lee, C. H., J. Y. Cha, B. S. Jun, H. J. Lee, Y. C. Lee, Y. L. Choi and Y. S. Cho. 2005. The antioxidative activity of glutathione-enriched extract from Saccharomyces cerevisiae FF-8 in in vitro model system. Kor. J. Life Sci. 15, 819-825 https://doi.org/10.5352/JLS.2005.15.5.819
  8. Lee, S. I., J. Y. Park, J. G. Jung, D. G. Lee, S. H. Lee, J. M. Ha, B. J. Ha and J. H. Lee. 2005. Effects of carbon source on production of leucocin A from transformed Saccharomyces cerevisiae. Kor. J. Life Sci. 15, 847-850 https://doi.org/10.5352/JLS.2005.15.6.847
  9. Lim, C. K., Y. K. Kim, K. H. Kim, C. H. Kim, S. K. Rhee and S. W. Nam. 2004. Expression and secretion of Zymomonas mobilis levansucrase in Saccharomyces ceevisiae. Kor. J. Life Sci. 14, 429-434 https://doi.org/10.5352/JLS.2004.14.3.429
  10. Paik, S. K., H. S. Yun, H. S. Sohn and I.N. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13, 85-89
  11. Wach, A. 1996. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259-265 https://doi.org/10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C
  12. Waghmare, S. K., V. Caputo, S. Radovic and C. V. Bruschi. 2003. Specific targeted integration of kanamycin resistance-associated nonselectable DNA in the genome of the yeast Saccharomyces cerevisiae. BioTechniques 34, 1024-1033
  13. Walker, M. E., J. M. Gardner, A. Vystavelova, C. McBryde and B. L. V. Jiranek. 2003. Application of the reuseable, KanMX selectable marker to industrial yeast: construction and evaluation of heterothallic wine strains of Saccharomyces cerevisiae, possessing minimal foreign DNA sequences. FEMS Yeast Res. 4, 339-337 https://doi.org/10.1016/S1567-1356(03)00161-2
  14. Yun, H. S., S. K. Paik, I. S. Kim, I. N. Jin and H. Y. Sohn. 2004. Direct evidence of intracellular alkalization in Saccharomyces cerevisiae KNU5377 exposed to inorganic sulfuric acid. J. Microbiol. Biotechnol. 14, 243-249

Cited by

  1. HSF1-mediated oxidative stress response to menadione in <i>Saccharomyces cerevisiae</i> KNU5377Y3 by using proteomic approach vol.04, pp.01, 2013, https://doi.org/10.4236/abb.2013.41007