DOI QR코드

DOI QR Code

Isolation and Purification of Novel Anti-Fungal Peptides from Hemolymph of Immunized Larvae of Housefly, Musca domestica

집파리유충 hemolymph 중신형의 anti-fungal peptides의 분리정제

  • Gu Li-Juan (Gui Yang Medical College) ;
  • Wu Jian-Wei (Gui Yang Medical College) ;
  • Su Xiao-Qing (Gui Yang Medical College) ;
  • Sung Chang-Keun (Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University)
  • ;
  • ;
  • ;
  • 성창근 (충남대학교, 농업생명과학대학, 식품공학과)
  • Published : 2006.06.01

Abstract

To isolate and purify anti-fungal active substances from immunized housefly (Musca domestica), low dose of Candida albicans was injected into the larvae of the housefly to induce the appearance of potent anti-fungal active substances in the hemolymph. This purification work was performed by the routine isolation and purification processes of protein, namely, solid phase extraction (SPE), SDS-PACE electrophoresis, HPLC purification. Three 4-16 kDa peptides which exhibited antifungal activity against Candida albican and other fungi were isolated from induced hemolymph. Consequently, further anti-fungal activity study showed that these three peptides were different either in molecular weight or in anti-fungal activity. All isolated substances were proved to be active and resistant to high-temperature. It was deduced that these peptides isolated from induced housefly were novel members of the insect defensin family and they were inducible.

유도된 집파리유통 hemolymph중에서 Candida albicans의 3가지 anti-fungal peptides를 분리하였다. 3개 anti-fungal peptides는 분자량이 4-16 kDa 사이의 분명한 구별이 있을 뿐만 아니라, 각 peptide는 anti-fungal peptides작용이 있었다. 이들 peptide의 공통 특징은 모두 열을 받은 뒤 활성이 변하지 않는 비교적 강한 내열성을 보여주었다.

Keywords

References

  1. Boman, H. G. and D. Hultmark. 1987. Cell-free immunity in insects. Annu. Rev. Microbiol. 41, 103-126 https://doi.org/10.1146/annurev.mi.41.100187.000535
  2. Boman, H. G., I. Nilsson-Faye, K. Paul and T. Rasmusin. 1974. Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect. Immun. 10, 136-145
  3. Boman, H. G., I. Faye, G. H. Gudmundsson, J. Y. Lee and D. A. Lidholm. 1991. Cell-free immunity in Cecropia. A model system for antibacterical proteins. Eur. J. Biochem. 201, 23-31 https://doi.org/10.1111/j.1432-1033.1991.tb16252.x
  4. Bulet, P., C. Hetru, J. L. Dimarcq and D. Hoffmann. 1999. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344 https://doi.org/10.1016/S0145-305X(99)00015-4
  5. Broekaert, W. F., B. P. A. Cammue, M. F. C. De Bolle, K. Thevissen, G. W. De Samblanx and R. W. Osborn. 1996. Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 16, 297-323
  6. Delucca, A. J., J. M. Bland, C. B. Vigo, T .J. Jacks, J. Peter and T. J. Walsh. 2000. D-Cecropin B: proteolytic resistance, lethality for pathogenic fungi and binding roperties Medical Mycology 38, 301–308 https://doi.org/10.1080/mmy.38.4.301.308
  7. Fehlbaum, P., P. Bulet, S. Chernysh, J. P. Briand, J. P. Roussel, L. Letellier, C. Hetru and J. A. Hoffmann. 1996. Structure–activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA. 93, 1221–1225
  8. Fehlbaum, P., P. Bulet, L. Michaut, M. Lagueux, W. F. Broekaert, C. Hetru and J. A. Hoffmann. 1994. Insect Immunity Septis injury of drosophila induces the synthesis of a potent anti-fungal peptide with sequence homology to plant anti-fungal peptides. J. Biol. Chem. 269, 33159–33163
  9. Hoebe, K., E. Jansen, and B. Beutler. 2004. The interface between innate and adaptive immunity. Nat. Immunol. 5, 971-974 https://doi.org/10.1038/ni1004-971
  10. Hoffmann, J. A. 1995. Innate immunity of insects. Curr. Opin. Immunol. 7, 4-10 https://doi.org/10.1016/0952-7915(95)80022-0
  11. Hoffmann, J. A., F. C. Kafatos, C. A. Janeway and R. A. B. Ezekowitz. 1999. Phylogenetic perspectives in innate immunity. Science 284, 1313-1318 https://doi.org/10.1126/science.284.5418.1313
  12. Hoffmann, J. A. and J. M. Reichhart. 2002. Drosophila, innate immunity, the evolutionary perspective Nature Immunology 3, 121-125 https://doi.org/10.1038/ni0202-121
  13. Hultmark, D., H. Steiner, T. Rasmuson and H. G. Boman. 1980. Insect Immunity. Purification and properties of three inducible bacterial proteins from Hemolymph of Immunized Pupae of Hyalopnora cecropia. Eur. J. Biochem. 106, 7-16 https://doi.org/10.1111/j.1432-1033.1980.tb05991.x
  14. Hultmark, D. 1993. Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet. 9(5), 178-183 https://doi.org/10.1016/0168-9525(93)90165-E
  15. Ishibashi, J., H. S. Sakanaka, J. Yang, A. Sagisaka and M. Yamakawa. 1999. Purification, cDNA cloning and modification of a defensin from the coconut rhinoceros beetle, Oryctes rhinoceros. Eur. J. Biochem. 266, 616-623 https://doi.org/10.1046/j.1432-1327.1999.00906.x
  16. Lauth, A., Nesin, J. P. Briand, J. P. Roussel and C. Hetru. 1998. Isolation, characterization and chemical synthesis of a new insect defensin from Chironomus plumosus (Diptera). Insect. Biochem. Molec. 28, 1059-1066 https://doi.org/10.1016/S0965-1748(98)00101-5
  17. Marcus, J. P., K. C. Goulter, J. L. Green, S. J. Harrison and J. M. Manners. 1997. Purification, characterisation and cDNA cloning of an antimicrobial peptide from Macadamia integrifolia. Eur. J. Biochem. 244, 743-749 https://doi.org/10.1111/j.1432-1033.1997.00743.x
  18. Meister, M., C. Hetru and J. A. Hoffmann. 2000. The antimicrobial host defense of Drosophila. Curr. Top. Microbiol. Immunol. 248, 17-36
  19. Naraoka, T. and H. Uchisawa. 2003. Purification, characterization and molecular cloning of tyrosinase from the cephalopod mollusk, Illex argentinus. Eur. J. Biochem. 270, 4026-4038 https://doi.org/10.1046/j.1432-1033.2003.03795.x
  20. Otvos, L. Jr. 2000. Antibacterial peptides isolated from insects. J. Pept. Sci. 6, 97-511 https://doi.org/10.1002/(SICI)1099-1387(200003)6:3<97::AID-PSC236>3.0.CO;2-E
  21. Reddy, K. V. R., R. D. Yedery and C. Aranha. 2004. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Ag. 24, 536-547 https://doi.org/10.1016/j.ijantimicag.2004.09.005
  22. Salzet, M. 2001. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol. 22, 285-288 https://doi.org/10.1016/S1471-4906(01)01895-6
  23. Tasiemski, A., F. Vandenbulcke, G. Mitta, J. Lemoine, C. Lefebvre, P. E. Sautiere and M. Salzet. 2004. Molecular characterization of two novel antibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzon tessulatum. J. Biol. Chem. 279, 1-10 https://doi.org/10.1074/jbc.X300006200
  24. Ulrich, H. E., M. M. Hansmann and Y. Okamoto. 1997. Characteristic temperatures of folding of a small peptide. Proc. Natl. Acad. Sci. USA. 94, 10652-10656
  25. Zhao, X. K. and D. Y. Zhao. 2001. The progress of studies on insect antibacterial peptides. Acta Parasitologica et Medica Entomologica Sinica 8, 115-121

Cited by

  1. Partial Purification and Quantification of Insulin-like Growth Factor-I from Red Deer Antler vol.17, pp.10, 2007, https://doi.org/10.5352/JLS.2007.17.10.1321
  2. Peptide antibiotics: An alternative and effective antimicrobial strategy to circumvent fungal infections vol.30, pp.5, 2009, https://doi.org/10.1016/j.peptides.2009.01.026