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This paper investigates algebraic semantics for some weak Boolean (wB)
logics, which may be regarded as left-continuous t-norm based logics (or
monoidal t-norm based logics (MTLs)). We investigate as infinite-valued
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of them.
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1. Introduction

Yang [8] has recently investigated several weak Boolean
(wB) logics, i.e., provided Routley-Meyer semantics for
them, based on wB algebras (see section 3). The wB
complementation — (of a wB algebra) rejects Heyting
complementation for the intuitionistic propositional calculus
H of Heyting (and its extension the Dummett logic LC (or
the Godel logic G)), and yet instead accepts its dual one.
Consider the conditions (1), (2) below for the wB
complementation in contrast with the corresponding
properties (1’) and (2') below of the Heyting complementation.

(1) —a A a=-—a,le, —a < a, for all a € A;
NaVv —a=1forala€A,

(IaAN "Ta=aie,a< aforalla € A
(2Ya AN Ta=0forala€ A

Each (1) and (2) is dual to (1') and (2'), respectively. To
make clear this, let L be a bounded lattice with bounds 0
and 1, x = n(x) be a complementation on L (in the sense
that it satisfies either (3) if a < b then n{b) < nfa) and
(1) or (3) and (1’)), and let a and b be elements of L.
Then, Hasse diagrams in [8] show this fact very well.

As he noted in it, wB logics work paraconsistently
because of the property of wB-negation, ie., the rejection of
(2'). This paper shows that wB-logics may also behave
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many-valuedly, not merely paraconsistently, by giving
well-known algebraic semantics for some wB logics. As
infinite-valued  propositional  logics we  algebraically
investigate wB-LC and wB-sKD: wB-LC is the LC with
— i place of 7, and wB-sKD is the sKD with — as well
as the involutive negation ~of KD (see [9] for sKD).

Dunn and Meyer [3] algebraically investigated G (and its
extensions). Baaz [1] extended G to the G with (so called)
Baaz’'s projection A (Gas) and quantifiers. Hajek [6]
especially investigated as an extension of the basic fuzzy
logic BL, which 1is the residuated many-valued logic
capturing the tautologies of continuous t—norms and their
residua, G (together with LC (the Lukasiewicz logic) and 1T
(the product logic)) and its extensions with A and
quantifiers. He, Esteva, Godo, and Navara [5] extended his
investigation to residuated logics with ~. Esteva and Godo
[4] moreover investigated as a system weaker than BL the
Monoidal t-norm based logic MTL, which copes with the
tautologies of left-continuous t-norms and their residua, and
its extensions such as the Nilpotent Minimal logic NM and
the NM with & (NM.).

Very interestingly, wB-LC and wB-sKD we shall
investigate can be regarded as extensions of MTL, ie, as
kinds of MTLs, and thus as logics capturing the tautologies
of left-continuous t-norms and their residua. We, however,
investigate these as logics capturing the tautologies of
extensions of distributive lattices. We give algebraic



4 EUNSUK YANG

completeness results for each of them and each first order
extension wB-LCV and wB-sKDV.

For convenience, by wB-L, we shall ambiguously express
wB-LC and wB-sKD together, if we do not need
distinguish them, but context should determine which
system is intended, and by wB-LV, wB-LCV and
wB-sKDV. Also we shall adopt the notation and
terminology similar to those in [4, 5 6], and assume
familiarity with them (together with results found in [4, 5, 6]).

2. Axiom Schemes and Rules for wB-L

For convenience, we present the axiomatic systems for
wB-L using the following axiom schemes and rules of
inference. We shall use the biconditional <>, where A < B
= (A —- B A (B — A), and the falsity f. For the
remainder we shall follow the customary notation and
terminology. We use the axiom systems to provide a
consequence relation.

AXIOM SCHEMESYD

1) Note that in wB-L Al4 and the first of Al5 are redundant: we can
obtain them by CP together with other axioms. We prove the first
of Al4 as example: 1. —A — —A V —B and B — —A V —B
(A7), 2. —(—A V —B) - A and —(—A V —B) — B (1, CP, Al2,
transitivity), 3. —(—A vV —B) — (A A B) (AD, A6, MP), 4. —(A
A B) = (—A VvV —B) (3, CP, Al2, transitivity).
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Al. A — A (self-implication)

A2. (A - B) — ((C - A) — (C — B)) (prefixing)

A3. (A—> (B —C) — B — (A — () (permutation)

A4. (A —> (A — B)) > (A — B) (contraction)

A5 (A N B) — A, (A A B) > B (A-elimination)

A6. ((A—B) A (A—C)—(A—(BAC)) (A-introduction)

A7. A— (A V B), B— (A VvV B) (V-introduction)

A8. ((A—C) A (B—C)) — ((AVB) — C) (V -elimination)

A9. (AN(BVC)) — ((AAB)V(AACQC)) (distributive law)

Al0. A — (B — A) (positive paradox)

All. (A — B) V (B — A) (chain)

Al2. —A — A (classical double negation)

Al3. A V —A (excluded middle)

Al4. —(AAB) —» (—AV—B), (—AV—B) — —(AAB)
(negated conjunction)

Al5. —(AVB) —» (—AA—B), (—AA—B) - —(AVB)
(negated disjunction)

Al6. ~~A < A (double negation)

Al7. (A — B) — (~B — ~A) (contraposition)

Al8 (~A V B) - (A —B)

Al19. (A—B) V ((A—B) — (~A V B))

A20. (A—(A—~A)) — (A—~A) (special contraction)

RULES

A — B, A -+ B (modus ponens (MP))

A, B - A A B (adjunction (AD))

From + A — B derive + —B — —A (contraposition (CP))
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DEFINITIONS

dfl. AV B:={(A—B) —B) A (B~ A — A
df2. ~A=A—f

df3. A& B := ~(A - ~B).

SYSTEMS
wB-LC: Al to Al5; MP, AD, CP; dfl.
wB-sKD: Al to A3, A5 to A20; MP, AD, CP; dfl to df3.

By dfl, we may concern ourselves with —, A, and — as
propositional connectives for wB-LC;, and by dfl and df2,
—, A, —, and f for wB-sKD. By df3, we can obtain

(R) (A — (B~ C)) « (A & B) — C) (residuation)

as a theorem of wB-sKD.2

Note first that in wB-sKD (as well as wB-LC) A& can be
defined as AA = ——A (df4), but it can not by ' and ~
as in SBL (the strict basic (fuzzy) logic) of [5]. Note
second that in wB-sKD A can not be defined as (D) A A
B = A & (A — B) and thus the axiom (A & (A — B)) —
(B & (B — A)) of BL (the basic logic for residuated fuzzy
logics) in [5, 6] is not valid in it. wB-sKD instead satisfies
the axiom schemes of both Monoidal Logic ML introduced

2) We can easily prove this. We show left to right as example: let A
— (B — C). Then by Al7, transttivity, and MP, A — (~C — ~B).
Thus by A3 and MP, ~C — (A — ~B), and so by Al7,
transitivity, and MP, ~(A - ~B) - C, Hence by df3 (A & B) — C.
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by Hohle [7] and its extension NM suggested by Esteva
and Godo [4], each of which is a weakening of BL in the
sense that (D) does not hold in it. Note thirdly that in
wB-LC A can be taken in place of & in BL but the former
does not satisfies df3 and thus it can not be defined by df3.

Note that “—", “~7, “A” and “V” are used ambiguously
as propositional connectives and as algebraic operators, but
context should make their meaning clear. Note also that
with respect to any wB negated formula of the form —B,
the customary definitions of connectives, eg., A - B = —A
(or ~A) V B, etc.,, in CPL can be applied to wB-L since
such formulas have Boolean properties (see T1 in section 4).

3. tpc-wB, skd, and skd-wB algebras

To prove algebraic completeness for wB-L, we must
define an algebra, more exactly a matrix, that will
characterize wB-L. We shall call it ¢ wB-L algebra; more
exactly, an rpc-wB algebra for wB-LC, and an skd-wB
algebra for wB-sKD. Note that, for convenience, by an
wB-L (algebra), we shall ambiguously express an rpc-wB
and an skd-wB (algebra) together.

First, we define a wB algebra to be a structure (A, T,
L, A, V, —) such that?

3) Note that by using wB4 we can get (3) in section 1, and conversely
by (3) (together with wB3) wB4: (wB4 to (3)) Let wB4 hold and a
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wBl. (A, A, V) is a distributive lattice;

wB2.a A T =aanda VvV L =aforalla & Al

wB3, —a A a=—a ie, —a < g foralla € A
wB4, —(a A b)=—a Vv —bforalabe A

wB5.a vV —a=T forala€ A,

and call —, which satisfies wB3 to wB5, wB complementation.
We next define an rpc-wB algebra whose class will
characterize wB-LC. An rpc-wB algebra is a structure (A,
T, L, A, VvV, =, —), where (A, T, L, A, V, =) is a
relatively pseudo-complemented (rpc) lattice satisfying

4 @a—-bvib—a=T,

called “prelinearity axiom” by Hajek (6], and — is a unary
operation on A which satisfies wB3 to wB5 above, and

wB6. —{a V b) = ~a A —bforalabe& A

That is, (A, T, L, A, V, —) is an rpc lattice satisfying
(4) and (A, T, L, A, V, —) is a wB algebra satisfying
wB6. (Note that when we especially need to mention this
algebra in distinction from a wB algebra that just satisfies
wB1 to wB5, we call it a de Morgan wB (dM-wB) algebra,

< b ie,a ANb=a Then, —a=—a Vv —h ie, —b < —a ((3)
towB4) )a A b<aandaAb < b Then by B3), —a < —(a
A b)and —b € —(a A b). Thus, —a V —b < —la A b). (i) —
(~aV —b) £ —a A —b,and —a A —b < a A b
Then, by (3), —(a A b) € ~—(~a V —b), and so by wB3, ——
(—a V —b) € —a V —b. Hence, —(@a A b) < —a V —h
Equationally to define a wB algebra, we take wB4 in place of (3).
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and corresponding complementation, i.e., the complementation
satisfying wB3 to wB6, dM-wB complementation.)

Now we define an skd algebra whose class characterizes
sKD. An skd algebra is a structure A = (A, T, L1, ~, A,
V, —) such that

M A, T, L, ~, A, V) is a bounded de Morgan (b-DM)
lattice, ie, (A, A, V) is a distributive lattice with the
greatest element T and the least L, and ~is a unary
operation on A which is an involution.

(i) let a « b = (a = b) A (b — a). The following conditions
(together with (4)) hold for all a, b, c: (with respect to
lattice ordering <)

B@—=b Vvila—>b—>(~avh)=T

B)@a—b) < {a—>b) e T)

(MH@—>b—->(~aVvhbh)<a—b < (~aVvh)

8) (a— (a— ~a) < (a— ~a)

We shall call the implication satisfying (4) to (8) strict
Kleene-Diense (skd) implication and a corresponding
algebra, ie., an algebra satisfying (i) and (i) (4) to (®), an
skd algebra. Note that since by (df5) a * b := ~(a — ~b)
it can be obtained that

@ b<a—ciffa* b < c (residuation),

An skd algebra can be (regarded as) a residuated algebra.

We next define an skd-wB algebra whose class will
characterize wB-sKD. An skd-wB algebra is a structure
(A, T, L, ~, A, V, =, —) such that () (A, T, L, ~,
A, V, —) is an skd algebra (satisfying (df5)) and (i) (A,
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T, L, A, V, —)is a dM-wB algebra.

An wB-L algebra is linearly ordered if the ordering of
its algebra is linear, ie, a < b or b < a (equivalently, a
Nb=aoraAb=0>b) for each pair a, b.

We note that in an rpc-wB algebra A is a continuous
t-norm and — is its residual (see Definition 2.1.1 in [6]),
and that in an skd-wB algebra * is a left-continuous
t-norm (but not a continuous one) and — is its residual,
and ~is the precomplement in the sense that ~a can be
defined as a — L (cf. [6]). (A, T, L, A (*), V, =) (A
in an rpc-wB algebra and * in an skd-wB algebra) is a
residuated lattice in the sense that it satisfies the definition
of a residuated lattice (see Definition 2.3.2 in [6]).

Since T is the dual of L, ie, T = —L (or ~1) and
join V can be defined by using — and meet A (see dfl)
(and in an skd-wB algebra ~ by — and L (see df2)), an
rpc-wB  algebra (A, T, L, — A, V, —) may be
abbreviated to (A, L, —, A, —) (and an skd-wB algebra
(A, T, L, ~, (=) A, V, =) to (A, L, () A, =)

Remark 1 The following are the conditions for A ina A
-algebra extending a BL algebra by adding a unary
operation A:

(AD) Aa V Tha=T;

(62) a(a V b) = (0a vV Ab)
(03) pa < a

(0d) ra < Ada

(A5) Aa * AHfa— b) < Ab; and
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(A6) AT = T.

We recall that Aa can be defined as ——a. Interestingly,
by this definition, in an wB-L algebra we can get (A2) to
(26), ie., they hold in it. But (A1) does not because an
wB-L algebra does not have Heyting complement ' (see
(5, 61). However, by (df6) L = —(a V —a) (= —a A —a)
and (df7) 7'a = a — L, in an rpc-wB algebra all the
conditions above may hold in an rpc-wB algebra. (It
ensures that wB-LC can be equivalent to G, because
conversely — can be defined as (df8) —a = 'Aa, and
corresponding conditions for — hold in an G algebra.)
However, df7 does not hold in an skd-wB aigebra.

4. Algebraic completeness for wB-L

We first present the tables for evaluation. An evaluation
for wB-L is a function vi: PV — [0, 1] that is extended to
all well-formed formulas of L(—, ~, —, A, V, py, D1, )

by the following tables: (PV: set of propositional variables,
[0, 1]: the unit interval)

TABLES

Tlv(—A) = 0 if v(A) =1
otherwise,

T2v(~A) = 1 — v(A),

T3. v(A A B) = min(v(A), v(B)),
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T4. v(A VvV B) = max (v(A), v(B)),

T5. v(A — B) = 1 if v(A) < v(B)
v(B) otherwise,
T6. v(A — B) = 1 if v(A) < v(B)

max (v(~A), v(B)) otherwise.

For wB-LC: T1, T3 to T5; and
for wB-sKD: T1 to T4, T6.

Note that, in fact, T2 and T4 are redundant because the
former can be defined by T6 and v(f) = 0 and the latter by
both T3 and T5 (w.rt wB-LC), and T6 (w.rt wB-sKD)
(see dfl and df2). We define a formula A to be a
I-tautology of wB-L, briefly a wB-L-tautology, if v(A) =
1, ie, T, for each wB-L-evaluation v. ,

We next define several notions. A theory over wB-L is a
set T of formulas. A proof in a sequence of formulas
whose each member is either an axiom of wB-L or a
member of T or follows from some preceding members of
the sequence using the rules above. T F A, more exactly
T Fus-L A, means that A is provable in T, ie, there is a
wB-L-proof of A in T. The deduction theorem for wB-L is
as follows: (see Theorem 4 [5])

Proposition 1 Let T be a theory and let A, B be formulas,
T U {A) FupL BIf T FypL —A — B.
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Note that (R) ensures that T F«p A® — B can be
regarded as T Fap A — (A — B). A theory Iis
inconsistent if T + f; otherwise it is consistent.

Let A be an wB-L algebra. In an analogy to the above,
we define an A-evaluation of propositional variables to be
any mapping Vv assigning to each propositional variable p an
element v(p) of A. In the obvious way, this extends to an
evaluation of all formulas using the operations on A as
truth functions, for example, v(A — B) = v(A) — v(B). We
define a formula A to be an A-tautology if v(A) = 1, ie,
T, for each A-evaluation v. Then, we can easily show that

Proposition 2 (Soundness) The logic wB-L is sound
with respect to wB-L-tautologies: if A is provable in
wB-L, then A is an A-tautology for each wB-L algebra A.

We note that in each wB-L algebra the equations (9) to
(13), the (equational) conditions for adjointness (9), of
Lemma 2.3.10 in [6] hold. Note also that with respect to an
rpc-wB algebra the class of all rpc lattices satisfying (4)
forms a variety, and that with respect to an skd-wB
algebra each condition (4) to (8) for skd implication has a
form of equation or can be defined in equation. Thus, since
the class of (bounded) distributive/de Morgan lattices is a
variety and each condition wB2 to wB6 has a form of
equation, the class of all dM-wB algebras is also a variety.
This ensures that
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Proposition 3 The class of all wB-L algebras is a
variety of algebras.

Next, we show that classes of provably equivalent
formulas form an wB-L algebra. Let T be a fixed theory
over wB-L. For each formula A, let [Alt be the set of all
formulas B such that T = A < B (formulas T-provably
equivalent to A). At is the set of all the classes [Alr. We
define that [Alr — [Blr = [A — Bly, —[Alr = [—Alr
(wrt wB-LC and wB-sKD), [Alr * [Blt = [A & Bl
(wrt wB-sKD), ~[Alr = [~Aly, ie, [Alr — [flr = [A — fl,
(wrt wB-sKD), [Al+ A [Blr = [A A Bl, [Alr V [Blr =
[A V Blr, 0 = [fl, and 1 = [t]l1.¥ By Ar, we denote this
algebra.

Note that to define At algebra we need just the
definitions of —, A, —, and 0 because we can define other
operations and special element by using them.

Proposition 4 At is an wB-L algebra.

Proof Note that wB-LC has the same positive part as

4) It can be ensured that this definition is correct due to the
provabilities as follows (we just need to check that < is a
congruence with respect to —, A, and —). we check just one
direction. Let - A — B. With respect to —, by CP, we can prove
—B — —A from the assumption; with respect to A, by A5 and
transitivity, (A A C) — B, and thus (A A C) — (B A C) by A5,
A6, AD, and MP; with respect to —, by transitivity, it is almost
immediate that (B — C) — (A — C) and (C — A) — (C — B).
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LC in the sense that with respect to the part of
negation-free formulas wB-LC may have the same axiom
schemes and rules as LC, and thus a formula not
containing negation is provable in LC iff it is provable in
wB-LC. (This is obvious. We leave its proof to interested
readers.) Thus, with respect to wB-LC it suffices to check
that — is a dM-wB complementation. Note also that the
lattice ordering < satisfies the following (see the proof of
Lemma 2.3.12 [6]):

[Alr < Bt i#f T - A—B.

The axiom schemes Al2, Al3, Al4, and Al5 ensure that
— is a dM-wB complementation, ie., — satisfies wB3,
wBb5, wB4, and wB6, respectively. Thus, AT (of wB-LC) is
an rpc-wB algebra. Moreover, with respect to wB-sKD, Ab
to A9, Al6, and Al7 ensure that A, V, and ~ satisfy de
Morgan lattice properties, ie., (i) in section 3. All, AlS,
and A20 together with the theorems (10) (A — B) — ((A
—B)~t), (1) (A—->B) > (~A V B) - (A —B) <
(~A V B)) ensure that — together with VvV, A, and ~
satisfies (i1) in section 3. That is, All, A19, A20, (10), and
(11) ensure that (4), (5), (8), (6), and (7), respectively, can
be satisfied by these operations. Thus At (of wB-sKD) is
an skd-wB algebra. []

Now we show how filters on residuated lattices determine
homomorphisms and characterize homomorphisms to linearly
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ordered algebras. Let A be a residuated lattice. A filter on
A is a non-empty set F € A such that for each X, y € A,

(Fll)x € Fandy € Fimply x A y € F,
Fxe Fandx cy(orx—y € F)imply y € F,
(F3) (x — y) € F implies (—y — --x) € F.

F is a prime filter iff it is a filter and for each x, v € A,
PRl x—v)EeFo{y—>x €F

Note that with respect to a filter of wB-L algebras (PF)
implies the usual definition of a prime filter (and vice
versa) as follows:

Lemma 1 A filter F is prime iff (PF’') for each pair of
elements X, y such that x Vy € F,x € Fory € F.

Proof See Lemma 1 in [9]. [J

Corollary 1 Let F be a filter. Then,

(i) x € F implies —x € F.

(i) Let F be yet prime. Then, in a linearly ordered wB-L
algebra, —x =0 &€ Fforallx # 1 € F.

Proof (i) By use of (F3), we can prove this. (By using
Al3 and the primeness (PF') in Lemma 1, we may also
obtain —x € F from x € F in case F is prime.)

(i) Let x # 1. Then, —x = 1 and thus —=x = 0.
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Hence, by (1), if x (# 1) € F, then —x =0 € F. [

Proposition 5 Let A be an wB-L algebra and let F be a
filter. Put x =p y iff (x > y) € Fand (y —- x) € F.
Then,

(i) =r is a congruence relation over an wB-L algebra.

(ii) The quotient of algebra A/=f is an wB-L algebra.

(ili) A/=F is linearly ordered iff F is a prime filter.

(iv) Linearly ordered wB-L algebras A are simple, ie,

the only filters of a linearly ordered wB-L algebra A
are {1} and A itself.

Proof For (i), we first observe that = is transitive to
show that =p is an equivalence: it follows from the fact
that the formula (A - B) > (B > C) » (A — () is a
1-tautology over A, and thus (@ = b) < ((b — ¢) — (a
—c)ilet (@a—>h), (b—>c) € F If (a—>b) €F, then
(b —1¢) = (a—c¢) € F. Hence, since (b — ¢c) € F, (a
- ¢) € F. Thus, we may define equivalence classes [x]z =
{y: x =ryh

We next verify that =p is a congruence, e, preserves
operations, Analogously to the proof of the statement that
Al < Blt iff T v A — B in Proposition 4, we can
show that [xlr < [ylr iff x = v € F. we prove right to
left as example. Let x — y € F. Then, since x — X € F,
A6 ensures that x — (x A y) € F. Thus, since A5
ensures that (x A y) = x € F, (x A y) =r x. Hence, [x
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Ayl G Ixlr A Iyl =[x, e, X < [yls

Note that, in an analogy to the footnote 5, we can verify
that [xJr = [ylr implies [—=xJr = [—yl, x A 2zlr = [y A
zle, [x =zl = [y = 2z, and [z = x[r = [z — y]& as an
example we show that [xJr = [ylr implies [—xlr = [—ylr
Let [x]Jr < [ylr. Then, x = y € F. Thus, by (F3), —v —
—x € F, and so [—ylr < [—xlr. Analogously, [—xJr <
[—vlr follows from [ylr < [xJr. Hence, [xJr = [ylr implies
[—=xJr = [—vIr. Therefore, =f is a congruence.

(i) and (iii) are analogous to those of Lemma 2.3.14 and
those in proofs of Theorem 2.4.12 in [6].

The proof of (iv) reduces to showing that the only filters
of a linearly ordered wB-L algebra A are {1} and the full
algebra A itself. This is true because if a filter F has an
element x # 1, then 0 € F by Corollary 1 (ii) and thus F
=A. O

Proposition 6 Let A be an wB-L algebra and let a € A,
a # 1. Then there is a prime filter F on A not containing a.

Proof Note that we can use the primeness (PF') in place
of (PF) by Lemma 1, and thus by Prime Filter Separation
Principle in a distributive lattice, it is immediate. The proof
is very analogous to that of Lemma 86.2 in Dunn and
Hardegree [2].

Let A, a, 1 be as in the hypothesis. Then, Fo = [1), = {x
e A1 < x} is a fiter senaratine 1 from a. We let E he
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the family of filters of A, which have 1 as a member but
not a. E is non-empty, since it contains Fo. Now let C be
any non-empty chain of E. Then, UC & E. For clearly 1
€ UC, and a € UC. Then, it remains to show that UC is
a filter. Suppose b, ¢ € UC, but then there are F', F" €
C such that b € F’ and ¢ € F". But either F' € F” or F”
€ F', and so either (b A ¢) € F or (b AN ¢) € F
because both F' and F” are filters. But then in either case
(b AN ¢) € UC, and thus (F1) is satisfied. Similarly, we
can show that (F2) is satisfied. The interesting point to
check is that (F3) can be satisfied (with respect to an
wB-L algebra): let (b — ¢) € UC. Then, there is F' € C
such that (b — ¢) € F'. So, since F’ is a filter, (—¢c — —
b) € F'. Hence, (—c — —b) € UC, as desired.

By Zorn’s Lemma, we may conclude that E has some
maximal member F, which is a filter such that 1 € F and
a € F. It remains to show that F is prime. Its proof is as
usual (see the proof of Lemma 86.2 in [2] for it). [J

Proposition 7 Each wB-L algebra is a subdirect product
of linearly ordered wB-L algebras.

Proof Its proof is as usual (see the proof of Lemma
2.3.16 in [6)). [

Note that with respect to wB-algebras, le., rpc-wB
algebras and skd-wB algebras, this theorem is a subdirect
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decomposition theorem because by Proposition 5 (iv) linearly
ordered wB algebras are simple, and thus subdirectly
irreducible, which is not the case for skd algebras.

Let us associate with each formula A of wB-L a term A'
of the language of wB-L algebras by replacing the
connectives and constants —, ~, —, & A, V, f, t by
function symbols and special elements —, ~, —, *, A, V,
0 (or L), 1 (or T), respectively, and replacing each
propositional variable pi by a corresponding object variable x;.

Proposition 8 (i) Each formula which is an A-tautology
for all linearly ordered wB-L algebras is an A-tautology for
all wB-L algebras.

(i) A is an A-tautology iff the identity A' = 1 is true in A.

Proof (i) follows from (i) and the subdirect product
representation. (ii) is evident since the value of the term A'
given by an evaluation v is va(A). [

Theorem 1 (Weak completeness) wB-L is complete with
respect to the class of wB-L algebras, i.e., for each formula
A the following are equivalent:

(i) A is provable in wB-L, ie., Fus-L A,

(ii) For each linearly ordered wB-L algebra A, A is an

A-tautology,
(iii) For each wB-L algebra A, A is an A-tautology.
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Proof The implications of (i) to (ii) and (i) to (iii) have
been established. Thus it suffices to show that (iil) to (i)
holds:

Note that Proposition 4 says that the algebra Aws1 of
classes of equivalent formulas of wB-L is an wB-L
algebra. Thus, an A satisfying (iii) is an Aus-L-tautology.
Now let v(p) = [pdws-L for all propositional variables. Then
v(A) = [AlysL = [tlsp1, and thus FusL A < t. Hence,
w1 A. [

To achieve strong completeness for wB-L, we add more
definitions on a theory T to the definitions above. Let A be
an wB-L algebra. Note that elements of T are axioms of
T. An A-evaluation v is an A-model of T if vala) = 1a
for each axioms a € T. T is complete if for each pair A,
B of formulas, T + A — B or T - B — A. Note that
corresponding to Lemma 1 it can be ensured that T is
complete iff for each pair of A, B such that T H A V B,
TF Aor T F B (see Lemma 523 in [6]). We call this,
e, the T of the second statement, also complete.

Proposition 9 (i) T is complete iff the wB-L algebra Ar
is linearly ordered.

(i) If T is a theory and T ¥ A, then there is a
consistent complete supertheory T' 2 T such that T' ¥ A.

Proof (i) Left to right. Let T be complete and A, B be
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the pair of formulas of its language. We note that () [Alr
< [Blt iff T - A — B. Since T is complete, either T +
A — B and thus by (*) [Alx < [Bl, or T - B — A and
thus by (*) [Blr < [Alr. Hence < is linear and thus At is
linearly ordered.

Right to left. Let At be linearly ordered and A, B be as
above. Then, either [Alt < [Blr and T - A — B, or [Blr
< [Alr and T + B — A. Hence, T is complete.

(1) We shall use the completeness property of T, which
corresponds to (PF') in Lemma 1. Where A is a set of
formulas not necessarily a theory, A + A can be thought
of as saying that A is deducible from the ‘axioms’ A. The
set of {A: A + A} is intuitively the smallest theory
containing the axioms A, and we shall label it as Th(4).

Now take an enumeration {Ay;, n € o} of the
well-formed formulas of wB-L. We define a sequence of
sets by induction as follows:

To={A" T FupL A’}
Tin = Th(T, U {Aiq))  if it is not the case that T, A FwsL A,
T; otherwise,

Let T’ be the union of all these Ty's. It is easy to see
that T’ is a theory not containing A (and thus it is
consistent). Also we can show that it is complete.

Suppose toward contradiction that B V C € T’ and B, C
& T'. Then the theories obtained from T U B and T' U
C must both contain A. It follows that there is a
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conjunction of members of T’ T” such that T" A B Fup-L
A and T" A C Fyp1 A. Then, by A8 Proposition 1 (ie.,
Deduction Theorem), AD, and MP, Fyp-1 (——(T" A B) V
—(T" A C)) — A. Note that Al4 and Al5 ensure that
we can get —(A A B) & (——A A —B) and —(A
V B) & (—A V ——B) as theorems. Thus, we can
indistinguishably use these properties. Hence, s ((——
™ N —B) vV (——T" A —C)) — A. Then, we obtain
Fwpr —T” A (—B v —=C)) — A by A2, A9, and
MP, and thus Fupr —(T” A (B vV C)) — A. Hence, T”
A (B V C) FusL A by Proposition 1. From this we get
that T' = A, which is contrary to our supposition.

(Note that in place of Ty, Ti, B, and C above, we may
use the completeness of T corresponding to (PF) and get

the same result, i.e., the completeness of T’, just by taking
T() = T,

Tin =T U {a — Bi} if it is not the case that T, o = B F A;
T U {3 — «} otherwise, ie., T, B — o ¥ A,

B, = o = B and C, = B; — a; respectively (cf. see
Lemma 2.4.2 in [6)).) [

By using Proposition 9 (and Soundness as usual), we can
easily show that

Theorem 2 (Strong completeness) Let T be a theory
over wB-L and let A be a formula. Then the following are
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equivalent:
1) T Fusi A
(ii) For each linearly ordered wB-L algebra A and each
A-model v of T, va(A) = 1a.
(iil) For each wB-L algebra A and each A-model v of T,
va(A) = 1a.

5. wB-LV: the first order extension of wB-L

The completeness theorems for fuzzy predicate logics
presented in [5, 6] may generalize for the present situation.

A trivial generalization of those of section 6 in [5] and
Chapter V in [6] gives the notions of a language, its
interpretations, and formulas for wB-LYV as follows:

Given a linearly ordered wB-L algebra A, an
A-interpretation, ie., an A-structure, of a language
consisting of some predicates P € Pred and constants ¢ €
Const is a structure M = (M, (rp)pepred, (Mc)ecconst), Where
M= @, 1rp: M™ —> A and mc € M (for each P € Pred,
¢ € Const).

Let L be a predicate language and let M be an
A-structure for L. An M-evaluation of object variables is a
mapping e assigning to each object variable x an element
e(x) € M. Let e, ¢ be two evaluations. e =x e’ means
that e(y) = e'(y) for each variable y distinct from x.

The value of a term-given by M,e is defined as follows:
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Ixlve = e(x) and |clve = me. The (truth) value 1A[*ye of a
formula (where e(x) € M for each variable x) is defined
inductively: for A being P(x, -+ , ¢, ),

IP(x, -, c, "')IAM,e = rpe(x), =, me, ),

the value commutes with connectives, and

(VAP = inf{lARyet e =4 ')
if this infimum exists, otherwise undefined, and similarly for
dx and sup. M is A-sdfe if all infs and sups needed for
definition of the value of any formula exist in A, ie,
|Al*ye is defined for all A, e.

Let A be a formula of a language L and let M be a safe
A-structure for L. The truth value of A in M is

|AI%y = inf{|Al*qe e M-evaluation).

A formula A of a language L is an A-tautology if |Aly =
1a for each safe A-structure M, ie., |Al*we = 1 for each
safe A-structure M and each M-evaluation of object
variables.

The axioms of wB-LV are those of wB-L plus the
following set of axioms for quantifiers (taken by Hajek [6]
as those of the basic predicate logic BLY):

(V1) (VX)A(x) — A(t) (t substitutable for x in A(x)}
(31 A(t) — (IXAK) {t substitutable for x in Ax))
(V2) (VXA — B) —» (A — (¥x)B) (x not free in A)
(32) (Vx}A — B) —» ({(Ix)A — B) (x not free in B}
(V3) (VxXA V B) - ((VX)A V B) (x not free in B)

Rules of inference for wB-LV are MP, AD, CP, and
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generalization (GN), ie., from A infer (Vx)A. (Note that in
wB-sKDV one quantifier is definable from the other one
and the negation ~, for instance, (Ix)A = ~(Vx)~A.
Thus the above set of axioms for quantifiers could be.
simplified, ie., (V3), (31), and (32) become provable as in
the Lukasiewicz predicate logic LV (cf. see Remark 54.2 in

(3D).

Proposition 12 (i) The axioms (V1), (V2), (V3), (31),
and (32) are A-tautologies for each linearly ordered wB-L
algebra A. (i) The rules MP, AD, CP, and GN preserve
A-tautologyhood.

Proof (i) By Lemmas 5.1.9 in [6].

(i) MP and GN are by Lemma 5.1.10 in {3]. AD is by
Proposition 12 in [9]. Thus, for wB-LY we need just to
consider that the rule CP preserves A-tautologyhood. For
CP, we show that

(1) for any formulas A, B, safe A-structure M, and
evaluation e,

if IA = Bl*Me = 1a, then |—B — —Al*y, = 14, and

(2) consequently,

if [A — Bl* = la, then |—B — —Al*y = 14

thus if A — B is la-true in M, then —B — —A is.

(1) is as in propositional calculus. To prove (2) put [Aly
= ay and |Bly = by. We have to show that

if infu(aw = bw) = 1, then infu(—bw = —ay) = 1
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(indices A, M deleted, w runs over all evaluations =x e).
To do this, it suffices to derive (Vx)(—B — —A) from (V
x)(A — B) in wB-LV. Let - (Vx)(A — B). Then, by (V
1) and MP, + A — B. Thus, by CP - —B — —A, and
so F (Vx)(—B — —A) by GN. [

Definitions of a theory T over wB-LV are almost the
same as wB-L. We need just to consider such definitions in
M. Let A be a linearly ordered wB-L algebra and let M be
a safe A-structure for the language of T. M is an
A-model of T if all axioms of T are la-true in M, ie,
|A* = 1s in each A € T. Then, Proposition 12 ensures
that wB-LV is sound with respect to linearly ordered
wB-L algebras as follows.

Proposition 13 (Soundness) Let T be a theory in the
language of T over wB-LY and let A be a formula of T.
If T + A, then |Al*y = 1a for each linearly ordered wB-L
algebra A and each A-model M of T.

Proof By induction on the length of a proof. [J

To investigate completeness for wB-LV, we have the
same definitions on “consistency” and “completeness” of a
theory T as in wB-L. We moreover define the Henkinness
of T (over wB-LY) as follows: T is Henkin if for each
closed formula of the form (Vx)A(x) unprovable in T, ie,
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T ¥ (Vx)A(x), there is a constant ¢ in the language of T
such that A(c) is unprovable in T, te, T ¥ Alc).

For each theory T over wB-LV, let At be the algebra of
classes of T-equivalent closed formulas with the usual
operations. It is clear that At is an wB-L algebra.

Lemma 5 For each theory T and each closed formula A,
if T ¥ A, then there is a complete Henkin supertheory T'
of T such that T' ¥ A.

Proof See the proofs of Proposition 9 (i) above and
Lemma 5.2.7 in [6]. [J

Lemma 6 For each complete Henkin theory T and each
closed formula A, if T ¥ A, then there is a linearly
ordered wB~L algebra A and A-model M of T such that
A%y < Ir.

Proof By Lemma 528 in [6]. [J

By wusing Lemmas 5 and 6, we can show the
completeness for wB~LY as follows.

Theorem 4 (Completeness) Let T be a theory over wB-L
¥ and let A be a formula. T proves A over wB-LV iff
|Al* = 1a for each linearly ordered wB-L algebra A, each
safe A-model M of T.
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