DOI QR코드

DOI QR Code

Spent Wheat Straw Compost of Agaricus bisporus Mushroom as Ruminant Feed

  • Fazaeli, H. (Animal Science Research Institute) ;
  • Masoodi, A.R. Talebian (Agriculture and Natural Resources Research Center)
  • Received : 2004.11.02
  • Accepted : 2005.08.16
  • Published : 2006.06.01

Abstract

Spent compost wheat straw is an available by-product from edible mushroom production, which constitutes a potential pollutant and is cost effective for disposal. This study was conducted to determine the nutritive value as ruminant feed of spent wheat straw compost from Agaricus bisporus mushroom production. The compost was provided from a mushroom farm, the casing soil was removed from the whole compost, and then it was sun dried and sampled for chemical analysis. An experiment was conducted, in which four wheat straw-based diets comprising control (I), 10% spent straw (II), 20% spent straw (III) and 30% spent straw (IV) were tested in a cross-over design using 8 sheep. Dry matter intake (DMI) was 74.0, 73.8, 70.2 and 57.1 and organic matter intake (OMI) was 62.7, 63.4, 58.0 and 44.4 g per kg $BW^{0.75}$ for diets I, II, III and IV, respectively, which, were significantly (p<0.05) lower for diet IV. Digestible OMI was respectively 33.1, 32.6, 30.6 and, 20.2 g per kg $BW^{0.75}$ on the four diets which were significantly (p<0.05) different between the treatments. Inclusion of spent compost straw up to 20% of the diet did not affect the digestibility of DM, OM, CF, ADF and NDF, but the diet containing 30% compost straw had statistically (p<0.05) lower digestibilities. Nitrogen balance was also significantly (p<0.05) different between the treatments.

Keywords

References

  1. AOAC. 1990. Official Methods of Analysis (214th ed.). Association of Official Analytical Chemists, Washington, DC, USA
  2. Bakshi, M. P. S. and P. N. Langar. 1985. Utilization of Agaricus bisporus harvested spent wheat straw in buffaloes. Indian J. Anim. Sci. 55(12): 1060-1063
  3. Bakshi, M. P. S. and P. N. Langar. 1991. Agaricus bisporus harvested spent wheat straw as livestock feed. Indian J. Anim. Sci. 61(6):653-654
  4. Ball, A. S. and A. M. Jackson. 1995. The recovery of lignocellulose degrading enzymes from spent mushroom compost. Bio Res. Technol. 54:311-314 https://doi.org/10.1016/0960-8524(95)00153-0
  5. Bonnen, A. M., L. H. Anton and A. B. Orth. 1994. Lignindegrading enzymes of the commercial button mushroom, Agaricus bisporus. Appl. Environ. Microbiol. 60:960-965
  6. Burton, S. G., J. R. Duncan, P. T. Kaye and P. D. Rose. 1993. Activity of mushroom polyphenol oxidase in organic medium. Biotechnol. Bioengin. 42(8):938-944 https://doi.org/10.1002/bit.260420804
  7. Burton, K. S., J. B. V. Hammond and T. Minamide. 1994. Protease activity in Agaricus bisporus during periodic fruiting (flushing) and sporophore development. Current Microbiol. 28(5):275-278 https://doi.org/10.1007/BF01573205
  8. Calzada, J. F., L. F. Franco, M. C. de. Arriola, C. Rolz and M. A. Ortiz. 1987. Acceptability, body weight changes and digestibility of spent wheat straw after harvesting of Pleurotus sajor-caju fed to lambs. Biol. Waste. 22(4):303-309 https://doi.org/10.1016/0269-7483(87)90117-0
  9. Crosbie, G. B. and J. B. Rowe. 1988. The effect of lignin silica content of oat hulls on their in vitro digestibility. Proceeding of the Australian Society of Animal Production. p. 17
  10. Dehanda, S., H. S. Garcha, V. K. Kakkar and G. S. V. K. Makkar. 1996. Improvement in feed value of paddy straw by Pleurotus. Mushroom Research. 5(1):1-4
  11. Durrant, A. J., D. A. Wood and R. B. Cain. 1991. Lignocellulose biodegradation by Agaricus bisporus during solid substrate fermentation. J. Gen. Microbiol. 137:751-755 https://doi.org/10.1099/00221287-137-4-751
  12. Fazaeli, H., Z. A. Jelan, A. Azizi, J. B. Liang, H. Mahmodzadeh and A. Osman. 2002a. Effects of fungal treatment on the nutritive value of wheat straw. Malaysian J. Anim. Sci. 7(2):61-71
  13. Fazaeli, H., Z. A. M. Jelan, H. Mahmoodzadeh, J. B. Liang, A. Azizi and A. Osman. 2002b. Effect of fungal treated wheat straw on the diet of lactating cows. Asian-Aust. J. Anim. Sci. 15(11):1573-1578 https://doi.org/10.5713/ajas.2002.1573
  14. Fazaeli, H., H. Mahmodzadeh, Z. A. Jelan, Y. Rouzbehan, J. B. Liang and A. Azizi. 2004a. Utilization of fungal treated wheat straw in the diet of late lactating cow. Asian-Aust. J. Anim. Sci. 17(4):467-472 https://doi.org/10.5713/ajas.2004.467
  15. Fazaeli, H., H. Mahmodzadeh, A. Azizi, Z. A. Jelan, J. B. Liang, Y. Rouzbehan and A. Osman. 2004b. nutritive value of wheat straw treated with pleurotus fungi. Asian-Aust. J. Anim. Sci. 17(12):1681-1688 https://doi.org/10.5713/ajas.2004.1681
  16. Gerrits, J. P. G. 1994. Composition, use and legislation of spent mushroom substrate in the Netherlands. Compost. Sci. Util. 2:24-30 https://doi.org/10.1080/1065657X.1994.10757930
  17. Giovannozzi-Sermanii, G., G. Bertoni and A. Porri. 1989. Biotransformation of straw to commodity chemicals and animal feeds. In: Enzyme Systems for Lignocellulose Degradation (Ed. W. Coughlan). Elsevier science, Amsterdam. 371-382
  18. Jalc, D., F. Neuron and P. Siroka. 1998. The effectiveness of biological treatment on wheat straw by white-rot fungi. Folica Microbiol. 43(6):687-689 https://doi.org/10.1007/BF02816391
  19. Kakkar, V. K., H. S. Garcha, S. Dhanda and G. S. Makkar. 1990. Mushroom harvested spent straw as feed for buffaloes. Indian J. Anim. Nutr. 7(4):267-272
  20. Kleyn John, G. and T. F. Wetzler. 1981. The microbiology of mushroom compost and its dust. Can. J. Microbiol. 27:748-753 https://doi.org/10.1139/m81-116
  21. Langar, P. N., J. P. Sehgal and H. S. Garcha. 1980. Chemical changes in wheat and paddy straws after fungal cultivation. Indian J. Anim. Sci. 50(11):942-946
  22. Langar, P. N., J. P. Sehgal, V. K. Rana, M. M. Singh and H. S. Garcha. 1982. Utilization of Agaricus bisporus-harvested spent wheat straw in the ruminant diets. Indian J. Anim. Sci. 52(8):634-637
  23. Maeda Takenaga, H., S. Aso and Y. Yamanaka. 1993. Utilization of heat-dried stipe of mushroom (Agaricus bisporus Sing.) for animal feed. J. Jpn. Soc. Grass. Scie. 39(1):22-27
  24. Manning, K. 1985. Food value and chemical composition. In the Biology and Technology of theCultivated Mushroom, (Ed. P. B. Flegg, D. M. Spencer, D. A. Wood, John Wiley and S. Chichester). pp. 211-230
  25. Marwaha, C. L., S. Manoj, B. Singh, B. S. Katoch and M. Sharma. 1990. Comparative feeding value of untreated, ureaammoniated and fungal treated wheat straw in growing Jersey calves. Ind. J. Dairy Sci. 43(3):308-313
  26. NRC. 1985. Nutrient requirements of sheep, sixth revised. National Academy Press, Washington, DC
  27. Oei, P. 1991. Some aspects of mushroom cultivation in developing countries. In:. Proceeding of the 13th int. cong. on the science and cultivation of fungi. (Ed. M. J. Mahe) Rotterdam, Netherlands. XIII, Vol. 2. pp. 777-780
  28. Quimio, T. H. 1988. Continuous recycling of rice straw in mushroom cultivation for animal feed. Recent advances in biotechnology and applied biology. Proceedings of Eighth International Conference on Global Impacts of Applied Microbiology, Hong Kong. pp. 595-601
  29. Riahi, H., A. Vahid and M. Sheidai. 1998. The first report of spent mushroom compost leaching from Iran. Acta Hortic. (Peking) 469:473-480
  30. Sarwar, M., M. Ajmal Khan and Mahr-un-Nisa. 2003. Nitrogen retention and chemical composition of urea treated wheat straw ensiled with organic acids or fermentable carbohydrate. Asian-Aust. J. Anim. Sci. 16(11):1583-1592 https://doi.org/10.5713/ajas.2003.1583
  31. SAS Institute. 1992. SAS/STAT user's guide. SAS Institute Inc, Cary
  32. Sharma, H. S. S., A. Furlan and G. Layons. 1999. Comparative assessment of chelated spent mushroom substrates as casing material for the production of Agaricus bisporus. Appl. Microbiol. Biotechnol. 52:366-372 https://doi.org/10.1007/s002530051533
  33. Spencer, D. M. 1985. The mushroom, its history and importance. In: Biology and technology of the cultivated Mushroom (Ed. P. B. Flegg, D. M. Spencer, D. A. Wood, John Wiley and S. Chi Chester) pp. 1-8
  34. Tamong, Y., G. Samanta, N. Charkraborty and L. Mandal. 1992. Nutritive value of azolla (Azolla pinnata) and its potentiality of feeding in goats. Environ. Ecol. 10(2):455-456
  35. Undersander, D. J., N. A. Cole and C. H. Naylon. 1987. Digestibility by lambs of water-stressed alfalfa as determined by total collection or internal markers. J. Dairy Sci. 70(8):1719-1723 https://doi.org/10.3168/jds.S0022-0302(87)80201-1
  36. Valmaseda, M., G. Almendros and A. T. Martinez. 1991. Chemical transformation of wheat straw constituents after solid-state fermentation with selected lignocellulose degrading fungi. Biomass and Bio Energy 1(5):261-266 https://doi.org/10.1016/0961-9534(91)90037-D
  37. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597 https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  38. Walli, T. K., S. N. Rai, B. N. Gupta and S. Kishan. 1991. Influence of fungal treated and urea treated wheat straw on nutrient utilization in calves. Ind. J. Anim. Nutr. 8(3):227-230
  39. Yamakawa, M., H. Abe and M. Okamoto. 1992. Effect of incubation with edible mushroom, Pleurotus ostreatus, on voluntary intake and digestibility of rice straw by sheep. Anim. Sci. Technol. 63:133-138
  40. Zadrazil, F. 1997. Changes in in vitro digestibility of wheat straw during fungal growth and after harvest of oyster mushrooms (Pleurotus spp.) on laboratory and industrial scale. J. Appl. Anim. Sci. 11:37-48

Cited by

  1. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes vol.96, pp.4, 2012, https://doi.org/10.1007/s00253-012-4446-9
  2. Recycling of mushroom compost wheat straw in the diet of feedlot calves with two physical forms vol.3, pp.3, 2014, https://doi.org/10.1007/s40093-014-0065-z
  3. cultivation by using JUNCAO technique on production performance and hematology parameters of dairy cows pp.13443941, 2015, https://doi.org/10.1111/asj.12371
  4. Direct Use of Spent Mushroom Substrate from Pleurotus pulmonarius as a Readily Delignified Feedstock for Cellulase Production pp.1877-265X, 2019, https://doi.org/10.1007/s12649-017-0106-8
  5. Nutritional composition of Termitomyces robustus (Agaricomycetes) and Lentinus squarrosulus (Mont.) singer in South East Nigeria pp.1572-9680, 2020, https://doi.org/10.1007/s10457-018-0323-6
  6. Effects of Spent Mushroom Substrates Supplementation on Rumen Fermentation and Blood Metabolites in Hanwoo Steers vol.23, pp.12, 2006, https://doi.org/10.5713/ajas.2010.10200
  7. Yield, Nutrient Characteristics, Ruminal Solubility and Degradability of Spent Mushroom (Agaricus bisporus) Substrates for Ruminants vol.24, pp.11, 2006, https://doi.org/10.5713/ajas.2011.11076
  8. Effect of Sawdust-Based Spent Mushroom Substrate Treated with Steam on Rat Growth Performance vol.20, pp.2, 2014, https://doi.org/10.3136/fstr.20.493
  9. Spent mushroom substrate of Pleurotus pulmonarius: a source of easily hydrolyzable lignocellulose vol.61, pp.5, 2006, https://doi.org/10.1007/s12223-016-0457-8
  10. Effects of Applying Microbial Additive Inoculants to Spent Mushroom Substrate (Flammulina velutipes) on Rumen Fermentation and Total-tract Nutrient Digestibility in Hanwoo Steers vol.25, pp.3, 2006, https://doi.org/10.11625/kjoa.2017.25.3.569
  11. Zero waste management of spent mushroom compost vol.23, pp.5, 2006, https://doi.org/10.1007/s10163-021-01250-3
  12. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review vol.344, pp.no.pa, 2006, https://doi.org/10.1016/j.biortech.2021.126157