DOI QR코드

DOI QR Code

Effect of Levels of Sodium DL-malate Supplementation on Ruminal Fermentation Efficiency of Concentrates Containing High Levels of Cassava Chip in Dairy Steers

  • Khampa, S. (Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture Khon Kaen University) ;
  • Wanapat, Metha (Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture Khon Kaen University) ;
  • Wachirapakorn, C. (Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture Khon Kaen University) ;
  • Nontaso, N. (Department of Microbiology, Faculty of Science, Khon Kaen University) ;
  • Wattiaux, M.A. (Department of Dairy Science, University of Wisconsin) ;
  • Rowlison, P. (Department of Agriculture, University of Newcastle upon Tyne)
  • Received : 2005.04.11
  • Accepted : 2005.08.23
  • Published : 2006.03.01

Abstract

Four rumen-fistulated dairy steers were randomly assigned according to a $4{\times}4$ Latin square design to investigate effects of supplementation levels of sodium dl-malate in concentrates on rumen ecology, ruminal fermentation, nitrogen balance, feed intake and digestibility of nutrients and ruminal microbial protein synthesis. The dietary treatments were cassava concentrate-based, containing sodium dl-malate supplementation at 0, 9, 18 and 27 g/hd/d with urea-treated rice straw (UTS) fed ad libitum. The experiment was conducted for four periods, each period lasting 21 days. Ruminal pH increased with incremental addition of malate (p<0.05). Additionally, molar proportions of propionate were higher in supplemented groups and was highest at 18 g/hd/d of malate supplement (p<0.05). Microbial protein synthesis tended to be higher in dairy steers receiving sodium dl-malate supplements and also was the highest at 18 g/hd/d. Variable bacterial populations, such as amylolytic, proteolytic and cellulolytic species were increased (p<0.05). Furthermore, protozoal populations were decreased significantly (p<0.05), while fungal zoospores were dramatically increased in dairy steers receiving sodium dl-malate supplement (p<0.05). These results suggested that supplementation of concentrate containing a high level of cassava chip at 18 g/hd/d with UTS in dairy steers could improve rumen fermentation efficiency and rumen microbial protein synthesis.

Keywords

References

  1. AOAC. 1985. Official Methods of Analysis. Association of Official Analysis Chemists, DC, USA
  2. ARC. 1990. The Nutrient Requirements of Ruminant Livestock. Suppl.1. Commonwealth Agricultural Bureaux, Slough, Farnham Royal, UK
  3. Callaway, T. R. and S. A. Martin. 1996. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J. Anim. Sci. 74:1982-1989
  4. Chanjula, P., M. Wanapat, C. Wachirapakorn, S. Uriyapongson and P. Rowlinson. 2003. Ruminal degradability of tropical feeds and their potential use in ruminant diets. Asian-Aust. J. Anim. Sci. 16:211-216 https://doi.org/10.5713/ajas.2003.211
  5. Chanjula, P., M. Wanapat, C. Wachirapakorn and P. Rowlinson. 2004. Effect of synchronizing starch sources and protein (NPN) in the rumen on feed intake, rumen microbial fermentation, nutrient utilization and performance of lactating dairy cows. Asian-Aust. J. Anim. Sci. 17:1400-1410 https://doi.org/10.5713/ajas.2004.1400
  6. Chen, X. B. and M. J. Gomes. 1995. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives-an overview of the technical details. Occasional Publication 1992. International Feed Resources Unit, Rowel Research Institute, Aberdeen, UK
  7. Chen, X. B., D. J. Kyle and E. R. ∅rskov. 1993. Measurement of allantoin in urine and plasma by high-performance liquid chromatography with pre-column derivatization. J. Chromato. 617:241-247 https://doi.org/10.1016/0378-4347(93)80494-O
  8. Crocker, C. L. 1967. Rapid determination of urea nitrogen in serum or plasma without deproteinzation. Am. J. Med. Tech. 33:361-365
  9. Demeyer, D. I. and M. K. Henderickx. 1967. Competitive inhibition of in vitro methane production by mixed rumen bacteria. Arch. Int. Phys. Biochim. 75:157-159
  10. Erdman, R. A. 1998. Dietary buffering requirements of the lactating dairy cows. A-review. J. Dairy Sci. 71:3246-3266 https://doi.org/10.3168/jds.S0022-0302(88)79930-0
  11. France, J. and R. C. Siddons. 1993. Volatile fatty acid production. In: Quantilitive Aspects Ruminant Digestion and Metabolisim. (Ed. J. M. Forbes and J. France). CAB. International, Willingford, UK
  12. Firkins, J. L. 1996. Maximizing microbial protein-synthesis in the rumen. J. Nutr. 126:1347-1354 https://doi.org/10.1093/jn/126.suppl_4.1347S
  13. Galyean, M. 1989. Laboratory procedure in animal nutrition research. Department of Animal and Life Science. New Mexico State University, USA
  14. Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analysis (apparatus, reagent, procedures and some application). Agric. Handbook No. 379, ARS, USDA, Washington, DC
  15. Hart, F. J. and M. Wanapat. 1992. Physiology of digestion of ureatreated rice straw in swamp buffalo. Asian-Aust. J. Anim. Sci. 5:617-622 https://doi.org/10.5713/ajas.1992.617
  16. Holzer, Z., Y. Aharoni, V. Lubimov and A. Brosh. 1997. The feasibility of replacement of grain by tapioca in diets for growing-fatting cattle. Anim. Feed Sci. Technol. 64:133-141 https://doi.org/10.1016/S0377-8401(96)01054-1
  17. Hoover, W. H. and S. R. Stokes. 1991. Balancing carbohydrate and proteins for optimum rumen microbial yield. J. Dairy Sci. 74:3640-3644
  18. Hungate, R. E. 1969. A roll tube method for cultivation of stric anaerobes. In: Methods in Microbiology (Ed. J. R. Norris and D. W. Ribbons). New York
  19. IAEA. 1997. Estimation of the rumen microbial protein production from purine derivatives in rumen. Anim. Prod. Heal. Sec. Vienna, Austria
  20. Kiyothong, K. and M. Wanapat. 2004. Growth, hay yield and chemical composition of cassava and Stylo 184 grown under intercropping. Aisan-Aust. J. Anim. Sci. 17:799-807 https://doi.org/10.5713/ajas.2004.799
  21. Kung, J. R., J. T. Huber, J. D. Krummrey, L. Allison and R. M. Cook. 1982. Influence of adding malic acid to dairy cattle rations on milk production, rumen volatile acids, digestibility, and nitrogen utilization. J. Dairy Sci. 65:1170-1174 https://doi.org/10.3168/jds.S0022-0302(82)82328-X
  22. Lopez, S., C. Valdes, C. J. Newbold and R. J. Wallace. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 81:59-64
  23. Martin, S. A. and M. N. Streeter. 1995. Effect of malate on in vitro mixed ruminal microorganism fermentation. J. Anim. Sci. 73:2141-2145
  24. Martin, S. A., D. G. Chamberlian, S. Robertson and D. Hirst. 1994. Rumen fermentation patterns in sheep receiving silages of different chemical composition supplemented with concentrates rich in starch or in digestible fibre. J. Agric Sci. 122:145-150 https://doi.org/10.1017/S0021859600065898
  25. Martin, S. A., M. N. Streeter, D. J.Nisbet, G. M. Hill and E. E. Williams. 1999. Effect of DL-malate on ruminal metabolism and performance of cattle fed a high concentrate diets. J. Anim. Sci. 77:1008-1015 https://doi.org/10.2527/1999.7741008x
  26. Mertens, D. R. 1977. Dietary fiber components: relationship to the rate and extent of ruminal digestion. Fed Proc., Fed. Am. Sci. Exp. Biol. 36:187-192
  27. Newbold, C. J., R. J. Wallace and F. M. McIntosh. 1996. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 76:249-261 https://doi.org/10.1079/BJN19960029
  28. Nisbet, D. J. and S. A. Martin. 1991. Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium. J. Anim. Sci. 69:4628-4633 https://doi.org/10.2527/1991.69114628x
  29. Owens, F. N. and R. Zinn. 1988. Protein metabolism of ruminant animals. In: The Ruminant Animal Digestive Physiology and Nutrition. (Ed. D. C Church). Waveland Press Inc., Prospect Hights, IL, USA
  30. Perdok, H. B. and R. A. Leng. 1990. Effect of supplementation with protein meal on the growth of cattle given a basal diet of untreated or ammoniated rice straw. Asian-Aust. J. Anim. Sci. 3:369-279
  31. Promkot, C. and M. Wanapat. 2005. Effect of level of crude protein and use of cottonseed meal in diets containg cassava chips and rice straw for lactating dairy cows. Asian-Aust. J. Anim. Sci. 18:502-511 https://doi.org/10.5713/ajas.2005.502
  32. Rogers, R. A. and W. B. Withman. 1991. Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, American Society for Microbiology, Washington, DC
  33. Sanson, D. W. and O. T. Stallcup. 1984. Growth response and serum constituents of Holstein bulls fed malic acid. Nutr. Rep. Int. 30:1261-1267
  34. SAS Institute Inc. 1998. SAS/STAT User's Guide 6.12 th edn. SAS Institute Inc., Cary, Nort Carolina
  35. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 32:199-208 https://doi.org/10.1079/BJN19740073
  36. Stallcup, O. T. 1979. Influence of addition of DL-malic acid to diets of lactating dairy cows. J. Dairy Sci. 62 (Suppl. 1):225. (Abstr.)
  37. Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedure of Statistics. McGraw-Hill Publishing Co., New York
  38. Sutton, J. D., S. V. Morant, J. A. Bines, D. J. Napper and D. I. Givens. 1993. Effect of altering the starch: fibre ratio in the concentrates on hay intake and milk production by Friesian cows. J. Agric. Sci. 120:379-390 https://doi.org/10.1017/S0021859600076541
  39. Van Keulen, J. and B. A. Young. 1977. Evaluation of acid insoluble ash as a neutral marker in ruminant digestibility studies. J. Anim. Sci. 44:282-287 https://doi.org/10.2527/jas1977.442282x
  40. Wanapat, M. 1990. Nutritional Aspects of Ruminant Production in Southeast Asia with Special Reference to Thailand. Funny Press, Ltd., Bangkok, Thailand
  41. Wanapat, M. 2000. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian-Aust. J. Anim. Sci. 13 (Suppl. 1):59-67
  42. Wanapat, M. 2003. Manipulation of cassava cultivation and utilization to improve protein to energy biomass for livestock feeding in the tropics. Asian-Aust. J. Anim. Sci. 16:463-472 https://doi.org/10.5713/ajas.2003.463
  43. Wanapat, M. and O. Pimpa. 1999. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Aust. J. Anim. Sci. 12:904-907 https://doi.org/10.5713/ajas.1999.904
  44. Zinn, A. R. and F. N. Owen. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157-163 https://doi.org/10.4141/cjas86-017

Cited by

  1. Replacement of Soybean Meal by Yeast Fermented-Cassava Chip Protein (YEFECAP) in Concentrate Diets Fed on Rumen Fermentation, Microbial Population and Nutrient Digestibilities in Ruminants vol.9, pp.12, 2010, https://doi.org/10.3923/javaa.2010.1727.1734
  2. Feeding a High Concentration Diet Induces Unhealthy Alterations in the Composition and Metabolism of Ruminal Microbiota and Host Response in a Goat Model vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00138
  3. Effect of Cassoy-urea Pellet as a Protein Source in Concentrate on Ruminal Fementation and Digestibility in Cattle vol.19, pp.7, 2006, https://doi.org/10.5713/ajas.2006.1004
  4. Effects of Urea Level and Sodium DL-malate in Concentrate Containing High Cassava Chip on Ruminal Fermentation Efficiency, Microbial Protein Synthesis in Lactating Dairy Cows Raised under Tropical Con vol.19, pp.6, 2006, https://doi.org/10.5713/ajas.2006.837
  5. Phylogenetic Analysis of 16S rDNA Sequences Manifest Rumen Bacterial Diversity in Gayals (Bos frontalis) Fed Fresh Bamboo Leaves and Twigs (Sinarumdinaria) vol.20, pp.7, 2006, https://doi.org/10.5713/ajas.2007.1057
  6. Effects of Replacing Ground Corn with Cassava Chip in Concentrate on Feed Intake, Nutrient Utilization, Rumen Fermentation Characteristics and Microbial Populations in Goats vol.20, pp.10, 2007, https://doi.org/10.5713/ajas.2007.1557
  7. Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment vol.20, pp.2, 2006, https://doi.org/10.5713/ajas.2007.200
  8. Effect of Disodium Fumarate on In vitro Rumen Fermentation of Different Substrates and Rumen Bacterial Communities as Revealed by Denaturing Gradient Gel Electrophoresis Analysis of 16S Ribosomal DNA vol.20, pp.4, 2006, https://doi.org/10.5713/ajas.2007.543
  9. Effect of Levels of Supplementation of Concentrate Containing High Levels of Cassava Chip on Rumen Ecology, Microbial N Supply and Digestibility of Nutrients in Beef Cattle vol.20, pp.1, 2007, https://doi.org/10.5713/ajas.2007.75
  10. Profiling of Rumen Fermentation and Microbial Population Changes in Goats Fed with Napier Grass Supplemented with Whole Corn Plant Silage vol.10, pp.1, 2006, https://doi.org/10.3923/ajas.2016.1.14
  11. In Vitro 반추위 발효를 통한 볏짚 분해와 섬유소 박테리아 군집 변화의 관계 연구 vol.37, pp.1, 2006, https://doi.org/10.5333/kgfs.2017.37.1.35