Estimation Model for Simplification and Validation of Soil Water Characteristics Curve on Volcanic Ash Soil in Subtropical Area in Korea

난지권 화산회토양의 토색별 토양수분 특성곡선 및 단일화 추정모형

  • Hur, Seung-Oh (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Moon, Kyung-Hwan (Agricultural Environment Division, National Institute of Subtropical Agriculture, RDA) ;
  • Jung, Kang-Ho (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Ha, Sang-Keun (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Song, Kwan-Cheol (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Lim, Han-Cheol (Soil Management Division, National Institute of Agricultural Science & Technology, RDA) ;
  • Kim, Geong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University)
  • Received : 2006.07.18
  • Accepted : 2006.11.02
  • Published : 2006.12.30

Abstract

Most of volcanic ash soils in South Korea are distributed in Jeju province which is an island placed on southern part of Korea and has steep slope mountain area. There are many soils containing high contents of organic matter (OM) derived from volcanic ash in Jejudo, also. Therefore, irrigation and drainage in volcanic ash soil different with general soil which has low OM content have to be applied with another management way, but studies searching appropriate methods for them are set on insufficient situation because the area of volcanic ash soil in South Korea is only 1.3% (130,000ha). This study was conducted for analysis of soil water content and irrigation quantity appropriate for crops cultivated in volcanic ash soil with high OM content. Although soils with different soil color have the same soil texture, soil water characteristics curve by soil color showed the difference of water retention capability by OM content. But, this characteristics classified with soil color could be unified by scaling technique with similitude analysis method which get dimensionless water content using a present water content, a residual water content and saturated water content (or water content at 10kPa). A relation of gravimetric soil water content (GSWC) and dimensionless water content by the results showed a form of power function. The dimensionless water content (DWC) express a relative saturation degree of present water content. This was also expressed by van Genuchten model which describe the relation between relative saturation degrees and matric potentials. These results on soil water characteristics curve (SWCC) of volcanic ash soil will be the basic of irrigation plan in area having high organic contents into soil.

유기물 함량이 많은 난지권 제주도의 화산회 토양에서의 수분함량과 토양수분 장력과의 관계를 파악하는 것이 밭작물이 주로 재배되는 제주도 특성상 계획적인 관개관리를 통해 효율적인 물 관리를 가능하게 할 것이므로 이를 위해 본 연구는 토양수분 장력을 실측하지 않고 추정할 수 있도록 유기물 함량이 다른 토색별 토양수분특성곡선을 작성하고자 하였다. 유기물 함량에 차이가 많이 나는 세 가지 색의 토양을 이용해 토양수분 장력별로 토양수분 함량을 측정한 후 scaling 기법을 이용해 토양수분 특성곡선 추정모형을 작성했다. 암갈색, 농암갈색, 흑색으로 구분이 가능한 화산회 토양을 토색별로 살펴보면, 토성이 동일하더라도 유기물함량이 높은 화산회 토양일수록 토색이 진한 경향을 보여 토색에 미치는 유기물 함량의 영향을 판단할 수 있었다. 토색별 토양수분 특성곡선은 흑색토, 농암갈색토, 암갈색토의 순으로 수분 보유능의 차이를 보였으며, 이들도 scaling 기법을 통해 토양수분장력을 dimensionless water content의 멱함수 형태로 단일화 시킬 수 있었다. 또한, scale 변환 수분함량을 이용해 주로 토양수분 특성을 해석하는데 많이 이용되고 있는 van Genuchten 모형에 적용할 수 있는 매개변수들을 토양시료 전체에 대해, 그리고 각각의 토색별로 작성하였다. 이들 함수는 로지스틱(logistic) 형태를 보였다. 결과적으로 토양수분 곡선특성 추정모형은 수리특성의 기본이 되어 농경지에서의 물의 이동특성을 해석하는 밑바탕이 될 것이며, van Genuchten 변수들은 유기물 함량이 높은 지역에서 SWAT 등의 다양한 수문모형들에 적용이 가능할 것이다.

Keywords

References

  1. Brooks, R.H., and A.T. Corey. 1964. Hydraulic properties of porous media, Hydrol. Pap. 3. Colorado State University, Fort Collins
  2. Eom, K.C., G.C. Song, G.S. Ryu, Y.K. Sonn, and S.E. Lee. 1995. Model equations to estimate the soil water characteristics curve using scaling factor. J. Korean Soc. Soil Sci. Fert. 28:227-232
  3. Eom, K.T. Y.H. Joo, and K.S. Lee. 1977. Study of soil characteristics for synthesis development plan of Jejudo. Study Report of Natio. Insti. of Agri. Sci. and Tech. 19:1-17
  4. Gardner, W.R., D. Hillel, and Y. Benyamini, 1970. Post-irrigation movement of soil water. 1. Redistribution, Water Resources Research. 6:851-861 https://doi.org/10.1029/WR006i003p00851
  5. Kang, H.J. 2005. Soil erosion characteristics and erosion control of sloped upland in Jeju. Ph.D. Thesis, Jeju National University, Jeju, Korea
  6. Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Research 12:593-622
  7. NIAST. 2000. Soil and plant analysis methods. Nat'l. Inst. of Agr. Sci. and Tech. Suwon, Korea
  8. van Genuchten M. Th. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal 44:892-898 https://doi.org/10.2136/sssaj1980.03615995004400050002x
  9. Warick, A.W. 2002. Soil physics companion. p. 75-76. CRC Press LLC. Boca Raton. USA
  10. Yoo, S.H. 2002. Soil encyclopedia. p. 391 Seoul Natio. Univ. Press. Seoul, Korea