Characteristics of Soil Water Runoff and Percolation in Sloped Land with Different Soil Textures

경사지 토양에서 강우량과 토성에 따른 물 유출 및 침투 특성

  • Lee, Hyun-Haeng (National Institute of Agricultural Science Technology) ;
  • Ha, Sang-Keon (National Institute of Agricultural Science Technology) ;
  • Hur, Seung-Oh (National Institute of Agricultural Science Technology) ;
  • Jung, Kang-Ho (National Institute of Agricultural Science Technology) ;
  • Kim, Won-Tae (National Institute of Agricultural Science Technology) ;
  • Kim, Kye-Hoon (Dept. of Environmental Horticulture, The University of Seoul)
  • 이현행 (농촌진흥청 농업과학기술원) ;
  • 하상건 (농촌진흥청 농업과학기술원) ;
  • 허승오 (농촌진흥청 농업과학기술원) ;
  • 정강호 (농촌진흥청 농업과학기술원) ;
  • 김원태 (농촌진흥청 농업과학기술원) ;
  • 김계훈 (서울시립대학교)
  • Received : 2006.04.03
  • Accepted : 2006.08.11
  • Published : 2006.10.30

Abstract

Soil loss induced by erosion has come to be a serious problem in Korea's sloped land since more than 70% of upland fields are located on the sloped land area. The purpose of this study was to investigate the phase of water flow in differently soil textured plot soil types by rainfall amount. Lysimeters with slope of 15%, 5 m in length, 2 m in width, and 1 m in depth were prepared and filled up with three different soil textures, such as sandy loam, loam, and clay loam, then relationships between seasonal rainfall and runoff, percolation were analyzed. Runoff and percolation rate were shown to increase linearly with increasing rainfall intensity in all the soil textures, but the starting threshold and increment rate in runoff and percolation occurrence were dependent differently upon soil textures. Percolation increment rate according to the increasing rainfall amount was 0.52, 0.36, and 0.57 for sandy loam, loam and clay loam soil respectively. The threshold rainfall amounts in which percolation occurs were 5.73 mm, 6.80 mm, and 12.86 mm for sandy loam, loam and clay loam respectively. Runoff increment rates were 0.42, 0.48 and 0.46 for sandy loam, loam and clay loam soil. The threshold rainfall amount in which runoff occurs was 10.50 mm in sandy loam, 7.76 mm in loam and 17.40 mm in clay loam. These different phases of water flow by soil texture could be used to suggest guidelines for the best management practice of the farming slope land.

우리나라 밭토양은 70% 이상이 경사지에 위치하고 있기 때문에 침식에 의한 토양유실이 매우 심각한 실정이다. 따라서 본 연구에서는 토성 간 강우량 및 $EI_{30}$에 따른 토양 유실량과 유출수량 및 지하침투수량을 비교함으로써 토성 및 강우형태에 따른 물 흐름양상을 파악하여 토양유실을 방지하는데 이용하고자 하였다. 본 연구에는 우리나라 밭토양의 중간 경사도 15%의 조건으로하여 라이시미터 토양에서 실험을 실시하였고 강우량과 $EI_{30}$, 토양 유실량과 유출수량, 지하침투수량을 조사하여 강우량과 토성에 따라 침투수량과 유출량과의 관계를 보았다. 강우량에 따른 유출수량 및 지하침투수량은 모두 강우량이 증가함에 따라 증가하는 정의 상관관계를 보였고 토성에 따라 강우량이 증가함에 따른 유출수의 상대적인 증가비율과 유출이 발생되는 최소 강우량은 다소 일률적인 양상을 보이지 않았다. 본 시험 기간동안 강우량 단위 증가에 따른 침투수량의 증분량은 식양토가 0.57으로 가장 높았으며, 다음으로 사양토와 양토가 각각 0.52, 0.36 순으로 나타났다. 지하침투수가 발생되기 시작하는 강우량은 식양토에서 12.86 mm으로 가장 높았고, 양토는 680 mm, 사양토는 5.73 mm로 나타났다. 토성별 강우량 단위 증가에 따른 유출수의 증분량은 토성에 따라 큰 차이는 없었으나 양토에서 0.48로 가장 높았고 식양토, 사양토는 0.46, 0.42 순이었고 유출발생 최소강우량도 양토가 17.4 mm로 가장 높았으며 사양토는 10.5 mm, 식양토는 7.76 mm 순으로 나타내었다.

Keywords

References

  1. Chang, N.K., and S.M. Yun. 1994. The soil and mineral nutrient erosion on the floors of vegetations. Kor. Turfgrass Sci. 8:149-165
  2. Hyun, B.K., M.S. Kim, K.C. Eom, K.K. Kang, H.B. Yun, M.C. Sea, and K.S. Sung. 2002. Evaluation on national environmental functionality of farming on soil loss using the USLE and replacement cost method. J. Korean Soc. Soil Sci. Fert. 35:361-371
  3. Hur, S.O., K.H. Jung, S.K. Ha, H.K. Kwark, and J.G. Kim. 2005. Mathematical description of soil loss by runoff at inclined upland of maize cultivation. J. Korean Soc. Soil Sci. Fert. 38:66-71
  4. Jung, P.K., M.H. Ko, and K.T. Um. 1985. Discussion of cropping management factor for estimation soil loss. J. Korean Soc. Soil Sci. Fert. 18:7-13
  5. Jung, P.K., M.H. Koh, and K.T. Um. 1989. Evaluation of soil erosion management practices on sloped farm land. Res. Rept. RDA. 31:16-22
  6. Jung, Y.S., Y.K. Kwon, H.S. Lim, S.K. Ha, and J.E. Yang. 1999. R and K factors for an application of RUSLE on the slope soils in Kangwon-Do. J. Korean Soc. Soil Sci. Fert. 32:31-37
  7. Lee, N.J., S.J. Oh, and P.K. Jung. 1998. Soil loss and water runoff in a watershed in Yeoju. J. Korean Soc. Soil Sci. Fert. 31:211-215
  8. Myers, J.L., and M.G. Wagger. 1996. Runoff and sediment loss from three tillage systems under simulated rainfall. Soil & Tillage Research. 39:115-159 https://doi.org/10.1016/S0167-1987(96)01041-0
  9. Oh, S.J., P.K. Jung, Y.H. Kim, M.H. Um, and K.T. Um. 1989. Effect of soil erosion control with different pasture establishments on slope land. Res. Rept. RDA. 31:24-28
  10. Oh, S.J., P.K. Jung, and K.T. Um. 1992. Soil erosion control with vinyl mulch of different crops. Res. Rept. RDA. 34:30-35
  11. Park, C.S., Y.S. Jung, J.H. Joo, and G.J. Lee. 2005. Measurement technique for soil loss estimation using laser distance meter in sloped upland. J. Korean Soc. Soil Sci. Fert. 38:127-133
  12. Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCOOL, and D.C. Yoder, 1997. Predicting soil erosion water: A guide to conservation planning with the revised universal soil loss equation(RUSLE). Agric. Handbook No. 703. U.S. Dept. Agric., Washington DC, USA
  13. Rajaram, G., and D.C. Erbach. 1998. Drying stress effect on mechanical behavior of clay loam soil. Soil & Tillage Research 49:147-158 https://doi.org/10.1016/S0167-1987(98)00163-9
  14. Seo, J.H., J.Y. Park. and D.Y. Song. 2005. Effect of cover crop hairy vetch on prevention of soil erosion and reduction of nitrogen fertilization in sloped upland. J. Korean Soc. Soil Sci. Fert. 38:134-141
  15. Smolikowski, B., H. Puig, and E. Roose. 2001. Influence of soil protection techniques on runoff, erosion and plant production on semi-arid hillsides of cabo verde. Agriculture, Ecosystems and Environment. 87:67-80 https://doi.org/10.1016/S0167-8809(00)00292-9
  16. Yun, B.K., P.K. Jung, S.J. Oh, S.K. Kim, and I.S. Ryu. 1996. Effect of compost application on soil loss and physico-chemical properties in lysimeter. J. Korean Soc. Soil Sci. Fert. 29:336-341
  17. Wischmeier, W.H., and D.D. Smith. 1965. Predicting rainfall erosion losses from cropland east of rocky mountains: Guide for selection of practices for soil and water conservation. Agric. Handbook No. 282. US Dept. Agric., Washington DC, USA
  18. Wischmeier, W.H., and D.D. Smith. 1978. Predicting rainfall erosion losses: A guide to conservation planning. Agric. Handbook No. 537. US Dept. Agric., Washington DC, USA