염류집적토양에서 규산질 비료가 인산의 유효도 증진에 미치는 영향

Effects of Silicate Fertilizer on Increasing Phosphorus Availability in Salt Accumulated Soil during Chinese Cabbage Cultivation

  • Lee, Yong-Bok (School of Environment and Natural Resources, The Ohio State University) ;
  • Kim, Pil-Joo (Dept. Agricultural Chemistry, Division of Applied Life Science, Graduate school, Gyeongsang National University)
  • 투고 : 2005.11.11
  • 심사 : 2006.01.30
  • 발행 : 2006.02.28

초록

시설재배지내 염류와 인산이 집적된 토양(Total-P; $2140mg\;kg^{-1}$)에서 이온간 경쟁에 의한 인산의 유효도를 증진효과 조사하기 위해 현장 작물재배시험을 실시하였다. 규산의 인산유효도 증진효과를 알아보기 위해 규산을 처리하지 않은 삼요소구(NPK)를 대비구로 하여, 인산무시용 조건에서 규산질비료를 세수준(0, 2, $4Mg\;ha^{-1}$) 처리하여 비교하였다. 인산을 시용한 삼요소구에 비해 인산을 무처리하고 규산을 처리시 배추의 생육과 수량은 크게 증대되었다. 특히 인산을 무처리하고 규산을 $4Mg\;ha^{-1}$ 처리시 삼요구에 비해 약 25%의 수량증대가 확인되었다. 식물체내 인산함량은 처리간 유의적인 차이는 없었으나 규산 처리량 증가에 따른 수량증대로 인산 흡수량이 유의적으로 증가하였다. 규산질비료 시용량 증가에 따라 토양 중 유효인산함량의 유의적 증가가 하였으며, 토양의 유효규산과 식물체의 규산함량간($r=0.76^{**}$), 그리고 식물체 규산함량과 배추 수량간($r=0.78^{**}$)에는 고도의 정의 상관관계가 확인되어 시용규산이 토양 내 인산의 유효도 증진과 작물의 인산흡수량 증가에 직접적 효과가 있는 것으로 조사되었다. 규산질비료 처리량이 증가함에 따라 식물체의 인산 흡수량 증가로 인해 시험 후 토양 중 Total-P 함량은 다소 감소하였으나, 유효인산 함량에는 큰 차이를 발견할 수 없었다. 시험 전 토양과 비교할 때 배추수확 후 토양 내 전 인산 함량 감소는 주로 Ca-P 함량 감소로부터 기인된 것으로 조사되었다. 결과적으로 인산 집적지 토양에 규산질비료의 적절한 시용은 인산의 유효도를 증진시켜 작물의 수량을 증대시키고, 인산시비량 감축에 따른 인산집적을 크게 감소시킬 수 있을 것으로 평가되었다.

High phosphate accumulations in greenhouse soils have been considered as a new agricultural problem in Korea. The effects of silicate on changes in phosphate fractions and on the yield of Chinese cabbage without P fertilization were investigated by pot experiment. For this experiment, P-accumulated soil was selected (Total-P; $2140mg\;kg^{-1}$). Three levels of silicate (0, 2, and $4Mg\;ha^{-1}$) without P fertilization and P fertilizer without silicate application (Si0+NPK) were applied in 1/2000a pots. The same amount of nitrogen and potassium fertilizers were applied to the all pots. The application of $4Mg\;ha^{-1}$ of silicate greatly increased the yield of Chinese cabbage by 25% compared to Si0+NPK treatment. Although there is no significant difference in plant P absorption among all the treatments, the uptake of P in the $4Mg\;ha^{-1}$ silicate application was significantly higher than Si0+NPK treatment due to increase in yield. The content of available $SiO_2$ in soil increased with increasing silicate application rates. The Si concentration of plant showed a positive correlation with available $SiO_2$ contents in soil and the yield of Chinese cabbage. Total P greatly decreased with increasing rates of silicate application, yet the change in available P content was not significant. The Si0+NPK treatment increased the content of Ca-P by 11%, however, which was decreased by 27% in the $4Mg\;ha^{-1}$ silicate application. Therefore, the effect of silicate on reducing total-P was mainly attributed to the change in concentration of Ca-P. Our results suggest that the application of silicate in P-accumulated soils not only increase the crops yield but also reduces phosphate accumulation.

키워드

참고문헌

  1. Addiscott, T. M. and D. Thomas. 2000. Tillage, mineralization and leaching: phosphate. Soil & Tillage Research 53:255-273 https://doi.org/10.1016/S0167-1987(99)00110-5
  2. Allison, L. E. 1965. Organic carbon. In Methods of Soil Analysis. Part II. Ed. C.A. Black. Am. Soc. Agron. Inc. Publ., Madison. WI. 1367-1376 p
  3. Alvarez, R., C.S. Fadley, and J.A. Silva. 1980. Silicate and phosphate adsorption on gibbsite studied by x-ray photoelectron spectroscopy angular distributions. Soil Science Society of American Journal 44:422-425 https://doi.org/10.2136/sssaj1980.03615995004400020043x
  4. Ayres, A. S. 1966. Calcium silicate slag as a growth stimulant for sugarcane on low-silicon soils. Soil Sci. 101(3):216-227 https://doi.org/10.1097/00010694-196603000-00009
  5. Elawad, S. H., J.J. Street, and G.J. Gascho. 1982. Respose of sugacane to silicate source and rate. I. Growth and yield. Agron. J. 74(3):481-484 https://doi.org/10.2134/agronj1982.00021962007400030019x
  6. Fisher, A. R. 1929. A preliminary note on the effect of sodium silicate in increasing the yield of barley. J. Agric. Sci. 19:132-139 https://doi.org/10.1017/S0021859600011217
  7. Ha, H. S., Y.B. Lee, B.K. Sohn, and U.G. Kang. 1997. Charactreristics of soil electrical conductivity in plastic film house located in southern part of Korea (in Korean with abstrat English). J. Korean Soc. Soil Sci. Fert. 30:345-350
  8. Haynes, R. J. 1984. Effect of lime, silicate, and phosphate applications on the concentrations of extractable aluminum and phosphate in a Spodosol. Soil Sci. 138:8-14 https://doi.org/10.1097/00010694-198407000-00002
  9. Kaufman, P. B., Y. Takeoka, T.J. Carlson, W.C. Bigelow, J.D. Jones, and P.H. Moore. 1979. Studies on silica deposition in sugarcane using scanning electron microscopy, energy dispersive X-ray analysis, neutron activation analysis, and light microscopy. Phytomorphology 29: 185-193
  10. Lanning, F. C. 1960. Nature and distribution of silica in strawberry plants. Proc. Am. Soc. Hort. Sc. 76:349-358
  11. Lee, Y. B., H.S. Ha, B.K. Park, J.S. Cho, and P.J. Kim. 2002. Effect of a fly ash and gypsum mixture on rice cultivation. Soil Sci. Plant Nutr. 48 (2): 171-178 https://doi.org/10.1080/00380768.2002.10409188
  12. Lee, Y. B., C.H. Lee, and P.J. Kim, 2004. Enhancement of phosphate desorption by silicate in salt-accumulated soil. Soil Sci. Plant Nutr. 51
  13. Ma, J. F., Y. Miyake, and E. Takahashi. 2001. Silicon as a beneficial element for corp plants. In Silicon in Agriculture. Eds. L.E. Dafnoff, G.H. Snyder, and G.H. Komdorfer. 17-39
  14. Ma, J. F. and E. Takahashi. 1990. The effect of silicic acid on rice in a P-deficient soil. Plant Soil 126: 115-119 https://doi.org/10.1007/BF00041376
  15. Miyake, Y. and E. Takahashi. 1985. Effect of silicaon on the growth of soybean plants in a solution culture. Soil Sci. Plant Nutr. 31:625-634 https://doi.org/10.1080/00380768.1985.10557470
  16. Miyake, Y. and E. Takahashi. 1983. Effect of silicon on growth of solution cultured cucumber plants. Soil Sci. Plant Nutr. 29:71-83 https://doi.org/10.1080/00380768.1983.10432407
  17. Miyake, Y. and E. Takahashi. 1978. Silicon deficiency of tomato plant. Soil Sci. Plant Nutr. 24: 175-189 https://doi.org/10.1080/00380768.1978.10433094
  18. O'Halloran, I. P. 1993. Total and Organic Phosphorus. In Soil sampling and methods of analysis. Ed. M.R. Carter. Canadian Society of Soil Science, Ontario, Canada. 213-229 p
  19. Obihara, C. H. and E.W. Russell. 1972. Specific adsorption of silicate and phosphate by soil. J. Soil Sci. 23: 105-117 https://doi.org/10.1111/j.1365-2389.1972.tb01646.x
  20. Olsen, S. R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939. U.S. Gov. Print. Office, Washington, DC
  21. Pardo, M. T. and M.E. Guadalix. 1990. Phosphate sorption in allophanic soils and release of sulphate, silicate and hydroxyl. Journal of Soil Science 41 :607-612 https://doi.org/10.1111/j.1365-2389.1990.tb00230.x
  22. Raid, R. N., P.L. Anderson, and M.F. Ulloa. 1992. Influence of cultivar and amendment of soil with calcium silicate slag on foliar disease development and yield of sugarcane. Crop Protection 11(1):84-88 https://doi.org/10.1016/0261-2194(92)90085-J
  23. Raupach, M. and C.S. Piper. 1959. Interactions of silicate and phosphate in a lateritic soil. Australian Journal of Agricultural Research 10
  24. RDA 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Suwon, Korea (in Korean)
  25. Roy, A. C., M.Y. Ali, R.L. Fox, and J.A. Silva. 1971. Influence of calcium silicate on phosphate slubility and availability in Hawaiian latosols In Int. Symp. Soil Fert. Evaluation, New Delhi, India, 1971. pp757-765
  26. Ryden, J. C., J.K. Syers, and L.A. Kippenberger. 1987. Inorganic anion sorption and interactions with phosphate sorption by hydrous ferric oxide gel. J. Soil Sci. 38:211-217 https://doi.org/10.1111/j.1365-2389.1987.tb02138.x
  27. Savant, N. K., G.H. Korndorfer, L.E. Datnoff, and G.H. Snyder. 1999. Silicon nutrition and sugarcane production: a review. J. Plant Nutr. 22:1853-1903 https://doi.org/10.1080/01904169909365761
  28. Shariatmadari, H. and A.R. Mermut. 1999. Magnesium and silicon-induced phosphate desorption in Smectite-, Palygorskite-, and Sepiolite-Calcite systems. Soil Sci. Soc. Am. J. 63:1167-1173 https://doi.org/10.2136/sssaj1999.6351167x
  29. Silva, J. A. 1971. Possible mechanisms for crop response to silicate application. In Proceedings of the international symposium for soil fertility evaluation, New Delhi, India, 1971. pp 805-814
  30. Smyth, T. J. and P.A. Sanchez. 1980. Effects of lime, silicate, and phosphorus applications to an Oxisol on phosphorus sorption and ion retention. Soil Sci. Soc. Am. J. 44:500-505 https://doi.org/10.2136/sssaj1980.03615995004400030012x
  31. Sumner, M. E. and W.P. Miller. 1996. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis Part 3. Ed. D.L. Sparks. Soil Sci. Soc. of America, Inc and America Soc. of Agronomy, Inc., Madison, WI, USA 1201-1230 p
  32. Syouji, K. 1981. Application effect of calcium silicate, rice straw, and citrate on phosphorus availability in soil. Soil Sci. Plant Nutr. 52:253-259
  33. Takahashi, E. 2002 An Introduction to the silicon research in Japan. In Silicon in Agriculture Conference. Japanese Soc. of Soil Sci. and Plant Nutri., Yamagata, Japan, 2002. pp 6-14
  34. Takahashi, E., J.F. Ma, and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plant. Comments Agric. Food Chemistry 2:99-122
  35. Voogt, W. and C. Sonneveld. 2001. Silicon in horticultural crops grown in soilless culture. In Silicon in agricultur. Eds, L.E. Datnoff, G.H. Snyder and G.H. Korndorfer. Elsevier Science, Amsterdam, The Netherlands. 115-131 p
  36. Watanabe, M. and N. Kato. 1983. Research on the behavior of applied phosphorus fertilizer in soil. 1) Fractionation method of soil inorganic phosphorus compounds in soil. 2) Changes in phosphorus compounds in soil with time. Mise. Publ. Fertil. Res. Div., Natl. Inst. Agric. Sci. Ser. No. 251:1-31 (in Japanese)