Nanofood and Its Materials as Nutrient Delivery System (NDS)

  • Kim, Dong-Myong (Bio-MAX Institute of Seoul National University) ;
  • Cho, Gyu-Seong (Department of Food & Biotechnology, College of Science & Engineering, Hankyong National University)
  • Published : 2006.06.30

Abstract

Incorporation of bioactive compounds such as vitamins, probiotics, bioactive peptides, and antioxidants into Nutrient Delivery System (NDS) for 'nanofood' provides simple way to develop novel functional foods that may have physiological benefits or reduce risks of diseases. As vital nutrient in nanofood, proteins possess unique functional properties including ability to form gels and emulsions, which allow them to be ideal nanofood materials for encapsulation of bioactive compounds. Based on protein physico-chemical properties, this review describes potential role of nanofood materials for development of NDS in hydrogel form, micro-or nano-particles. Applications of these nanofood materials to protect delivery-sensitive nutraceutical compounds are illustrated, and impacts of particle size on release properties are emphasized.

Keywords

References

  1. Kim, D. M. (2001) Using freezing and drying techniques of emulsions for the nanoencapsulation of fish oil to improve oxidation stability. Kor. Nanoresearch. Soc. 13, 17-21
  2. Kim, D. M. and Park, J. S. (2001) A continuous oxidation process for the regio-selective oxidation of primary alcohol groups in chitin and chitosan. Korean patent 10.2002.0007851
  3. Kim, D. M. (2001) Preparation and characterization of biodegradable or enteric-coated nanospheres containing the protease inhibitor camostat. Biomaterials 28, 8-12
  4. Kim, D. M. and Kwak, H. S. (2004) Nanofood materials and approachable development of nanofunctional dairy products. Kor. Dairy & Food Engin. 1, 1-7
  5. Kim, D. M. and Kwak, H. S. (2004) Development of functional nanofood and its future. Kor. Dairy & Food Engin. 2, 1-5
  6. Kim, D. M. and Cha, E. J. (2005) Clinical analysis of lutein in taking HPMC-lutein nanoparticle(nanofood) and in taking raw or cooked vegetables. Adv. Drug Deliv. Rev. 47, 221-224
  7. Kim, D. M. and Cha, E. J. (2002) Clinical analysis of lutein in taking HPMC-lutein nanoparticle (nanofood) and in taking raw or cooked vegetables. Kor. Soc. Med. Biochem. Mol. Biol. 34, 18-23
  8. Kim, D. M., Kim, T. K. and Joo, C. K. (2005) Safety and physiochemical properties of novel sustained release collagen based drug delivery system (COL DDS) in rabbit eye. J. Biomed. Mater. Res. 12, 21-24
  9. Kumar, M. N. V. R. (2000) Nano and microparticles as controlled drug delivery devices. J. Pharm. & Pharm. Sci. 3, 234-258
  10. Wildman, R. E. C. (2001) In Handbook of nutraceuticals and functional foods, Wildman, R. E. C., CRC Press, New York
  11. Elliott, R. and Ong, T. J. (2002) Science, medicine, and the future nutritional genomics. British Medical J. 324, 1438-1442 https://doi.org/10.1136/bmj.324.7351.1438
  12. Kim, D. M. and Park, J. S. (2002) Water soluble films comprising anti-cancer medicines and their preparation. Korean patent 10.2002.0014263
  13. Kim, D. M. and Park, J. S. (2002) Retinamide derivatives having anti-cancer activity, and anti-cancer agents containing them as an effective component. Korean patent 10.2002.001178
  14. Kim, D. M. and Joo, C. K. (2003) Be in progress Sustained release collagen film for treating ophthalmology disease and the method for producing thereof. Korean patent 2004.20099
  15. Bell, L. N. (2001) Stability testing of nutraceuticals and functional foods. In Handbook of nutraceuticals and functional foods, Wildman, R.E.C. pp. 501-516, CRC Press, New York
  16. Kim, D. M. and Park, J. S. (2002) Preparation of round microcapsules comprising powders of a steamed red-ginseng or a ginseng. Korean patent 10.2002.006318
  17. Kim, D. M. and Park, J. S. (2002) Emulsive compositions comprising high unsaturated fatty acids and their preparations for micro liquid capsules. Korean patent 10.2002.0003552
  18. Kim, D. M. and Park, J. S. (2002) New retinol derivatives, the method of preparations and the uses thereof. European patent 02729592.2.2404. KR0200041
  19. Kim, D. M. and Cha, E. J. (2002) Study on consequent nutrient intake status, body mass index, and fat distribution after silk amino peptide and dietary fiber supplementation. J. Korean Soc. Food Sci. Nutr. 39, 11-16
  20. Kim, D. M., Kim, S. H. and Ku, S. J. (2003) Study on consequent nutrient intake status, fat distribution and serum lipid composition after low-molecule peptide, green tea leaves and dietary fiber supplementation, SG-28 diet program. Kor. Nutr. Soc. 39, 53-59
  21. Kim, D. M., Kim, S. H. and Ku, S. J. (2001) Study on consequent body fat and serum lipid metabolism after cocoon hydrolysate, green tea leaves and dietary fiber supplementation. J. Korean Soc. Food Sci. Nutr. 39, 22-27
  22. Bryant, C. M. and McClement, D. J. (1998) Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends in Food Sci. Tech. 9, 143-151 https://doi.org/10.1016/S0924-2244(98)00031-4
  23. Clark, A. H. and Ross-Murphy, S. B. (1987) Structural and mechanical properties of biopolymer gels. Advan. in Polymer Sci. 83, 57-192 https://doi.org/10.1007/BFb0023332
  24. Dickinson, E. (2003) Colloidal aggregation: Mechanism and implications, In Food colloids, biopolymers and materials, Dickinson, E. and Vlie, T. van, (eds), pp. 68-83, Royal Society of Chemistry, Cambridge
  25. Walstra, P. (2003) Studying food colloids: Past, present and future. In Food colloids, biopolymers and materials, pp. 391-400, E. Dickinson and T. van Vlie, Editors, Royal Society of Chemistry, Cambridge
  26. Augustin, M. A. (2003) The role of microencapsulation in the development of functional dairy foods. Australian J. Dairy Technol. 58, 156-160
  27. Brannon-Peppas, L. (1993) Controlled release in the food and cosmetics industries, In Polymeric delivery systems, El- Nokaky, M. A. Piatt, D. M. and Charpentier, B. A. pp. 42-52, American Chemical Society, Washington, DC
  28. Kamath, K. R. and Park, K. (1993) Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev. 11, 59-84 https://doi.org/10.1016/0169-409X(93)90027-2
  29. Park, H. and Park, K. (1996) Hydrogels in bioapplications, In Hydrogels and biodegradable polymers for bioapplications, Ottenbrite, R. M., Huang, S. J. and Park, K., Editors, pp. 2-9, American Chemical Society, Washington, DC
  30. Peppas, N. A. (1997) Hydrogels and drug delivery. Current Opinion in Colloid& Interface Sci. 2, 531-537 https://doi.org/10.1016/S1359-0294(97)80103-3
  31. Qiu, Y. and Park, K. (2001) Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321-339 https://doi.org/10.1016/S0169-409X(01)00203-4
  32. Clark, A. H., Kavanagh, G. M. and Ross-Murphy, S. B. (2001) Globular protein gelation-theory and experiment. Food Hydrocolloids 15, 383-400 https://doi.org/10.1016/S0268-005X(01)00042-X
  33. Ziegler G. R. and Foegeding E. A. (1990) The gelation of proteins. Adv. Food & Nutri. Res. 34, 203-298 https://doi.org/10.1016/S1043-4526(08)60008-X
  34. Twomey, M., Keogh, M. K., Mehra, R. and O'Kennedy, T. (1997) Gel characteristics of $\beta$-lactoglobulin, whey protein concentrate and whey protein isolate. J. Texture Studies 28, 387-403 https://doi.org/10.1111/j.1745-4603.1997.tb00124.x
  35. Lefèvre, T. and Subirade, M. (2000) Molecular differences in the formation and structure of fine-stranded and particulate $\beta$-lactoglobulin gels. Biopolymers 54, 578-586 https://doi.org/10.1002/1097-0282(200012)54:7<578::AID-BIP100>3.0.CO;2-2
  36. Barbut, S. and Foegeding, E. A. (1993) $Ca^{2+}$-induced gelation of pre-heated whey protein isolate. J. Food Sci. 58, 867-871 https://doi.org/10.1111/j.1365-2621.1993.tb09379.x
  37. Maltais, A., Remondetto, G. E., Gonzales, R. and Subirade, M. (2005) Formation of soy protein isolates cold-set gels: Protein and salt effects. J. Food Sci. 70, 67-73 https://doi.org/10.1111/j.1365-2621.2005.tb09023.x
  38. Roff C. F. and Foegeding, E. A. (1996) Dicationic-induced gelations of pre-denatured whey protein isolate. Food Hydrocolloids 10, 193-198 https://doi.org/10.1016/S0268-005X(96)80034-8
  39. Remondetto, G. E. and Subirade, M. (2003) Molecular mechanisms of $Fe^{2+}$-induced $\beta$-lactoglobulin cold gelation: An interactions story. Biopolymers 69, 461-469 https://doi.org/10.1002/bip.10423
  40. Remondetto, G. E., Paquin, P. and Subirade, M. (2002) Cold gelation of $\beta$-lactoglobulin in the presence of iron. J. Food Sci. 67, 586-595 https://doi.org/10.1111/j.1365-2621.2002.tb10643.x
  41. Remondetto, G. E., Beyssac, E. and Subirade, M. (2004) Influence of the microstructure of biodegradable whey protein hydrogels on iron release: An in vitro study. J. Agri. & Food Chem. 52, 8137-8143 https://doi.org/10.1021/jf040286h
  42. Lefevre, T. and Subirade, M. (2003) Formation of intermolecular $\beta$-sheet structures: A phenomenon relevant to protein film structure at oil-water interfaces of emulsions. J. Colloid & Interface Sci. 263, 59-67 https://doi.org/10.1016/S0021-9797(03)00252-2
  43. Kim, D. M., Kim, T. K. and Joo, C. K. (2003) Characterization and biodegradation of novel sustained release collagen film containing 5-fluorouracil (5-FU) and mitomycin- C (MMC). Biomaterials Res. 7, 248-253
  44. Dickinson, E., Hong, S. T. and Yamamoto, Y. (1996) Rheology of heat-set emulsion gels containing $\beta$-lactoglobulin and small-molecule surfactants. Netherlands Milk and Dairy J. 50, 199-207
  45. Jost, R., Baechler, R. and Masson, G. (1986) Heat gelation of oil-in-water emulsions stabilized by whey protein. J. Food Sci. 51, 440-444 https://doi.org/10.1111/j.1365-2621.1986.tb11150.x
  46. Jost, R., Dannenberg, F. and Rosset, J. (1989) Heat-set gels based on oil/water emulsions: An application of whey protein functionality. Food Micro. 8, 23-28
  47. McClements, D. J., Monahan, F. J. and Kinsella, J. E. (1993) Effect of emulsion droplets on the rheology of whey protein isolates gels. J. Texture Studies 24, 411-422 https://doi.org/10.1111/j.1745-4603.1993.tb00051.x
  48. Leung Sok Line, V., Remondetto, G. E. and Subirade, M. (2005) Cold gelation of $\beta$-lactoglobulin oil-in-water emulsions. Food Hydrocolloids 19, 269-278 https://doi.org/10.1016/j.foodhyd.2004.06.004
  49. Totosaus, A., Montejano, J., Salazar, J. and Guerrero, I. (2002) A review of physical and chemical protein gel induction. International J. Food Sci. & Tech. 37, 589-601 https://doi.org/10.1046/j.1365-2621.2002.00623.x
  50. Brannon-Peppas, L. (1995) Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. International J.Pharmaceutics 116, 1-9 https://doi.org/10.1016/0378-5173(94)00324-X
  51. Varde, N. K. and Pack, D. (2004) Microspheres for controlled release drug delivery. Expert Opinion on Biological Therapy 4, 35-51 https://doi.org/10.1517/14712598.4.1.35
  52. Allemann, E., Leroux, J. C. and Gurny, R. (1998) Polymeric nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv. Drug Deliv. Rev. 34, 171-189 https://doi.org/10.1016/S0169-409X(98)00039-8
  53. Langera, K., Coestera, C., Webera, C., Briesenb, H. and Kreuter, J. (2000) Preparation of avidin-labeled protein nanoparticles as carriers for biotinylated peptide nucleic acid. European J. Pharm. & Biopharm. 49, 303-307 https://doi.org/10.1016/S0939-6411(00)00068-0
  54. Shahidi, F. and Han, X. Q. (1993) Encapsulation of food ingredients. Critical Rev. in Food Sci. & Nutri. 33, 501-547 https://doi.org/10.1080/10408399309527645
  55. Schäfer, V., Briesen, H., Andreesen, R., Steffan, A. M., Royer, C. and Tröster, S. (1992) Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: A possibility for antiviral drug targeting. Pharm. Res. 9, 541-546 https://doi.org/10.1023/A:1015852732512
  56. Pothakamury, U. R. and Barbosa-Gnovas, G. V. (1995) Fundamental aspects of controlled release in foods. Trends in Food Sci. & Tech. 61, 397-406
  57. Amidon, G. L., Levy, R. J. and Labhasetwar, V. (2003) Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J. Controlled Release 92, 173-187 https://doi.org/10.1016/S0168-3659(03)00328-6
  58. Berkland, C., King, M., Cox, A., Kim, K. and Pack, D. W. (2002) Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Controlled Release 82, 137-147 https://doi.org/10.1016/S0168-3659(02)00136-0
  59. Hori, M., Onishi, H. and Machida, Y. (2005) Evaluation of Eudragit-coated chitosan microparticles as an oral immune delivery system. International J. Pharm. 297, 223-234 https://doi.org/10.1016/j.ijpharm.2005.04.008
  60. Torrado, J. J., Illurn, L. and Davis, S. S. (1989) Particle size and size distribution of albumin microspheres produced by heat and chemical stabilization. International J. Pharm. 51, 85-93 https://doi.org/10.1016/0378-5173(89)90079-3
  61. Franz, J., Pokorova, D., Hampl, J. and Dittrich, M. (1998) Adjuvant efficacy of gelatin particles and microparticles. International J. Pharm. 168, 153-161 https://doi.org/10.1016/S0378-5173(98)00069-6
  62. Paynea, R. G., Yaszemskib, M. J., Yaskoc, A. W. and Mikos, A. G. (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles, Biomaterials 23, 4359-4371 https://doi.org/10.1016/S0142-9612(02)00184-9
  63. Alex, R. and Bodmeier, R. (1990) Encapsulation of watersoluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment. J. Microencaps. 7, 347-355 https://doi.org/10.3109/02652049009021845
  64. Bodmeier, R. and McGinity, J. W. (1987) Polylactic acid microspheres containing quinidine base and quinidine sulphate prepared by the solvent evaporation technique. J. Microencap. 4, 279-297 https://doi.org/10.3109/02652048709021820
  65. Swatscheka, D., Schattona, W., Müllerc, W. E. G. and Kreuter, J. (2002) Microparticles derived from marine sponge collagen (SCMPs): Preparation, characterization and suitability for dermal delivery of all-trans retinal. European J. Pharm. & Biopharm. 54, 125-133 https://doi.org/10.1016/S0939-6411(02)00046-2
  66. Latha, M. S., Rathinam, K., Mohanan, P. V. and Jayakrishnan, A. (1995) Bioavailability of theophylline from glutaraldehyde cross-linked casein microspheres in rabbits following oral administration. J. Controlled Release 34, 1-7 https://doi.org/10.1016/0168-3659(94)00088-C
  67. Latha, M. S., Lal, A. V., Kumary, T. V., Sreekumar, R. and Jayakrishnan, A. (2000) Progesterone release from glutaraldehyde cross-linked casein microspheres: In vitro studies and in vivo response in rabbits. Contraception 61, 329-334 https://doi.org/10.1016/S0010-7824(00)00113-X
  68. Sokoloski, T. D. and Royer, G. P. (1984) Drug entrapment within native albumin beads, In Microspheres and drug therapy, pharmaceutical, immunological and medical aspects, Davis, S.S., Illum, L., McVie, J.G. and Tomlinson, E., pp. 295-307, Elsevier, Amsterdam
  69. Tomlinson, E. and Burger, J. J. (1985) Incorporation of water soluble drugs in albumin microspheres. In Methods in enzymology, pp. 27-43, J. Widder and R. Green, Editors, Academic, New York
  70. Yeo, J. H., Lee, K. G., Lee, Y. W. and Kim, S. Y. (2003) Simple preparation and characteristics of silk fibroin microsphere. European Polymer J. 39, 1195-1199 https://doi.org/10.1016/S0014-3057(02)00359-2
  71. Beaulieu, L., Savoie, L., Paquin, P. and Subirade, M. (2002) Elaboration and characterization of whey protein beads by an emulsification/cold gelation process: Application for the protection of retinal. Biomacromolecules 3, 2239-2248
  72. Picot, A. and Lacroix, C. (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy J. 14, 505-515 https://doi.org/10.1016/j.idairyj.2003.10.008
  73. Rosemberg, M. and Young, S. L. (1993) Whey proteins as microencapsulating agents. Microencapsulation of anhydrous milk fat structure evaluation. Food Structure 12, 31-41
  74. Lazko, J., Popineau Y. and Legrand, J. (2004) Soy glycinin microcapsules by simple coacervation method. Colloids and Surfaces B: Biointerfaces 37, 1-8 https://doi.org/10.1016/j.colsurfb.2004.06.004
  75. Ezpeleta, I., Irache, J. M., Stainmesse, S., Chabenat, C., Gueguen, J. and Popineau, Y. (1996) Gliadin nanoparticles for the controlled release of all-trans-retinoic acid. International J. Pharm. 131, 191-200 https://doi.org/10.1016/0378-5173(95)04338-1
  76. Chen, L. and Subirade, M. (2005) Chitosan/â-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials 26, 6041-6953 https://doi.org/10.1016/j.biomaterials.2005.03.011
  77. Guérin, D., Vuillemard, J. C. and Subirade, M. (2003) Protection bifidobacteria encapsulated in polysaccharide-protein gel beads against gastric juice and bile. J. Food Protec. 66, 2076-2084 https://doi.org/10.4315/0362-028X-66.11.2076
  78. Arbós, P., Arangoa, M. A., Campanero, M. A. and Irache, J. M. (2002) Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticles. International J. Pharm. 242, 129-136 https://doi.org/10.1016/S0378-5173(02)00182-5
  79. Bruschi, M. L., Cardoso, M. L. C., Lucchesi, M. B. and Gremião, M. P. D. (2003) Gelatin microparticles containing propolis obtained by spray-drying technique: Preparation and characterization. International J.Pharmaceutics 264, 45-55 https://doi.org/10.1016/S0378-5173(03)00386-7
  80. Ishizaka, T. and Koishi, M. (1981) Preparation of egg albumin microcapsules and microspheres, J. Pharm. Sci. 70, 358-361 https://doi.org/10.1002/jps.2600700404
  81. Mauguet, M. C., Legrand, J., Brujes, L., Carnelle, G., Larré, C. and Popineau, Y. J. (2002) Gliadin matrices for microencapsulation processes by simple coacervation method. J. Microencap. 19, 377-384 https://doi.org/10.1080/02652040110105346
  82. Birnbaum, D., Kosmala, J., Henthorn, D. and Brannon-Peppas, L. (2000) Controlled release of beta-estradiol from PLAGA microparticles: The effect of organic phase solvent on encapsulation and release. J. Controlled Release 65, 375-387 https://doi.org/10.1016/S0168-3659(99)00219-9
  83. Kawashim, Y. (2001) Nanoparticulate systems for improved drug delivery. Adv. Drug Deliv. Rev. 47, 1-2 https://doi.org/10.1016/S0169-409X(00)00117-4
  84. MacAdam, A. B., Shafi, Z. B., James, S. L., Marriott, C. and Martin, G. P. (1997) Preparation of hydrophobic and hydrophilic albumin microspheres and determination of surface carboxylic acid and amino residues. International J. Pharm. 151, 47-55 https://doi.org/10.1016/S0378-5173(97)04886-2
  85. Weyermanna J., Lochmanna D., Georgensa C. and Zimmer A. (2005) Albumin-protamine-oligonucleotide-nanoparticles as a new antisense delivery system. Part 2: Cellular uptake and effect. European J. Pharm. & Biopharm. 59, 431-438 https://doi.org/10.1016/j.ejpb.2004.07.014
  86. Goldstein, I. J., Hughes, R. C., Monsigny, M., Osawa, T. and Sharon, N. (1980) What should be called lectin? Nature 285, 66-69
  87. Goppert, T. M. and Muller, R. H. (2005) Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. International J. Pharm. 302, 172-186 https://doi.org/10.1016/j.ijpharm.2005.06.025
  88. Morr, C. V. and Ha, E. Y. W. (1993) Whey protein concentrates and isolates: Processing and functional properties. Critical Rev. in Food Sci. & Nutri. 33, 431-476 https://doi.org/10.1080/10408399309527643
  89. Hoffman, M. A. M. and Mil, P. J. J. M. van (1999) Heatinduced aggregation of $\beta$-lactoglobulin as function of pH. J. Agri. Food Chem. 47, 1898-1905 https://doi.org/10.1021/jf980886e