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ANOTHER METHOD FOR A KUMMER-TYPE
TRANSFORMATION FOR THE GENERALIZED
HYPERGEOMETRIC FUNTION F, DUE TO PARIS

ARrJuN K. RATHIE AND YONG SuP KiMm *

Abstract. A Kummer-type transformation formula for the gener-
alized hypergeometric function I, deduced by Exton, rederived
in two simple and transparent ways by Miller and generalized by

Paris, is again derived by another method.

In 1997, Exton [1, Eq. (12)] deduced four new reduction formulas for
the Kampé de Fériet function and, as a special case of one of his four

main results, he obtained the following interesting identity:

a, 1+ 1ia b—a—-1, 24+a-1b
e Yo Fy 27 syl =oF i=y . 1
2 b, la y} 22{ b, l4a—b Y (1)

This result is an analog of the so-called Kummer’s first type trans-

formation formula [5] for the confluent hypergeometric function:
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Recently Miller 3] derived the result (1) in two simple and transpar-

ent ways.
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Very recently Paris [4] gave a general result of (1) in the form:
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where « is given by a = %.

Evidently (3) reduces to (1) by taking ¢ = 1a. The aim of this research
note is to derive (3) by another method.
For this, in fact, first we shall prove the following (presumably new)

general result:
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In order to prove (4), consider the integral

ap ;:1:] dzx. (5)
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Writing e %Y = e - e{172)¥ in (5) and expressing e(1=2)¥ as a series.

Changing the order of integration and summation, evaluating the

integral with the help of a known result [2, p.849, Eq.(4)]:
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and summing up the series, we get (7
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On the other hand, in (5), expressing oF1 as a series, changing the
order of integration and summation, evaluating the integral with the
help of a known result [2, p.318, 3.383(1)]:
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From (7) and (9), we get (4). This completes the proof of (4).

In (4), if we take a = -1, =b—-c—-1,y=b—-a—1and p = g,

we get, after a little simplification, Paris’ result (3). Consequently we

obtain Exton’s result for ¢ = %a.
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