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TEACHING PROBABILISTIC CONCEPTS AND
PRINCIPLES USING THE MONTE CARLO METHODS

SANG-GONE LEE

Abstract. In this article, we try to show that concepts and prin-
ciples in probability can be taught vividly through the use of the
Monte Carlo method to students who have difficulty with proba-
bility in the classrooms. We include some topics to demonstrate
the application of a wide variety of real world problems that can be
addressed.

1. Preliminary

The Curriculum and Evaluation Standards for School Mathematics
(NCTM,[6]) recommend that high school students extend their experi-
ences with simulations to continue to improve their intuition and build
more formal concepts of theoretical probability based on these expe-
riences. Particularly, the notions of chance, of variation, and of sta-
tistical inference are increasingly a part of the experience of living in
today’s technological society. The mathematical methods dealing with
such concepts is surely important knowledge for students to acquire. In
the classroom, teachers and students are finding that these methods can
infuse vitality into the teaching and learning situation. In keeping with

this idea, our approach bring into focus on developing the real world
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mathematics application of the Monte Carlo methods in studying and
investigating probabilistic situations with both high school students and

future secondary mathematics teachers.

We believe that one method for studying probability is through the
simulation of mathematical problems by a procedure that involves the
use of sampling techniques based on probability to approximate the solu-
tion. This method is sometimes referred to as the Monte Carlo methods.
The Monte Carlo methods are a very powerful tool for simulating proba-
bilistic situations, not only for simple problems but also for rather com-
plex problem situations. Although the method had been used before,
the Monte Carlo method was named and developed during the Second
World War by a group of mathematicians including J. V. Neumann to
solve problems that arose in the design of atomic reactors. Also, the
availability of computers has enabled to use the Monte Carlo method to
solve a wide range of real world problems including the development of

statistical tests.

Probability is usually a difficult subject for students. Having been
introduced to probability relatively late, students have little intuition
for it or experience with it. We believe that simulation gives students
a feeling of power over probability. Recently, teachers have found simu-
lation useful as a way of verifying results that students are reluctant to
believe from a purely analytic explanation. The Monte Carlo simulation
is easy to do in the classroom. Most needed materials can be quickly
made. Students will find this kind of mathematics fun and enjoy trying
to devise new and clever variations. If a computer is available in the
classroom, we think that the Monte Carlo method is a convincing way
of demonstrating its power. Participation in the Monte Carlo method
will give students a better understanding of probabilistic concepts and
principles involved, computers can also programmed to perform the sim-

ulation.
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In this article, we illustrate some topics using the Monte Carlo meth-
ods for solving probability problems. Since the programming syntax
is different for languages such as Pascal and Logo, we adopt the Pseu-
docodes that can be applied for Microsoft Excel, TI-graphing calculator,
and the others with the same logic and degree of effectiveness through
simple modifications of the programs used to simulate the problems. But
we should consider some kind of struggle against the somewhat negative
attitude toward the use of the new technology in the classroom, held by

many of our colleagues.

2. The Monte Carlo Simulation Technique

The Monte Carlo simulation technique is a method of approximately
solving mathematical problems by the simulation of random quanti-
ties. The name 'Monte Carlo’ comes from the city of Monte Carlo in
Monaco, famous for its gambling house. The systematic development
of the Monte Carlo methods dates from about 1944. In the nineteenth
century, statistical problems were sometimes solved with the help of
random selections by the Monte Carlo method. In the last century, the
Monte Carlo method has come back into favor. The Monte Carlo method
becomes necessary when mathematical analysis is difficult or impossi-
ble and experimentation is expensive or otherwise impractical. This is
physically different and easier to operate but has the same mathemat-
ical characteristics as the use of simple random devices such as dice,
coins, random numbers from tables, or the random number generator
of a computer. The theoretical basis for the Monte Carlo method is
called the Law of Large Numbers, which states that for a larger number
of times, the simulated estimate becomes approximately equal to the
theoretical parameter. Prior to the appearance of electronic computers,
this method was not widely applicable since the simulation of random

quantities by hand is a very laborious.
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Almost any probability or expected value problem can be solved by a
suitable Monte Carlo method. It may help students believe the results
by carrying out a simple classroom experiment that requires only one
die for each student to simulate the die many times. The Monte Carlo
simulation can be carried out at a very reasonable cost in the classroom.
Since such experiments are instructive, students seem to get the added
benefit of introducing them to the real world mathematics application
of the Monte Carlo methods. But the point is gradually made that the
laws of probability really do work if a sufficient number of trials are

permitted to occur.

Our government has launched the 7th educational curriculum in 2000
for a movement to reform teaching at all levels. Almost all the texts that
we use are written from a traditional point of view. Most of our math
teachers teach probabilistic concepts and principles in the same way that
are presented in the text they are using. Teachers want to teach stu-
dents in an exploratory and constructive fashion with explicit guidance
to build their knowledge with active learning on an efficient but passive
transfer of information. We want to encourage the Monte Carlo methods
to foster motive action and to improve problem solving on the basis of
theoretical probability. When doing a judicious choice of the simulations,
the Monte Carlo methods make students act, think, and evolve by their
own motivation. Since the simulation may be consider as a fair play,
student get to know its working rules which respond to anything they
are doing. Understanding the simulation involves determining what the
problem is seeking and what information and conditions are provided.
Devising a Pseudocode involves finding a strategy for logical thinking
that may help solve the problem. Carrying out the simulation involves
following the solution procedure and checking it for flaws. Teacher can
seek to be involved in a simulation with the system of interaction of the
student with the problems. According to the nature of the class, teach-

ers can decide if all the teams will work a problem at a time or if the
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different problems will be solved at the same time. The teamwork allows
standardization of knowledge among peers, fosters discussion of different
strategies of solution, and develops in the ability of communicate math-
ematical ideas. The simulation permits the justification that present a
validation process that can be established between student and teacher.
After summarizing the simulated results, teachers may try to introduce
theoretical background for the simulation discussed previously and com-
pare the result with the exact value. Thus, we believe that building the
concepts and principles of probability based on the experiment may not
only improve students’ problem solving performance, but it may also

help students more clearly understand the problem solving process.

In this article, we define three steps with slight modification in using
the Monte Carlo methods:
e Choose a problem and a random device.
Begin by identifying an approximate model to employ, and find a ran-
dom device applying the problem by the Monte Carlo method.
o Identify the possible outcomes of each trial, and determine the proba-
bility of each outcome.
A random device embody the mathematical characteristics of the prob-
lem. Show that the possible outcomes of the problem are matched to
outcomes of the random device that have the same probability. Deter-
mine the probability of each outcome. State whether or not the trials in
the original problem are independent.
e Compute the simulated answer, and do a large number of trials.
Show that by running additional trials with a new number, matches oc-
cur with the simulation of different sizes. Consider that many runs of
the simulations are needed to give a sufficiently accurate estimate. In
the section 4, we will show that to cut the error in half, the number of

trials must be quadrupled.

Although students and future teachers can profit a great deal from
studying and investigating the Monte Carlo methods, the Monte Carlo
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methods do not answer all the problems in teaching and learning prob-
ability. The Monte Carlo methods require careful planning on the part
of the teacher and, careful attention to students’ responses. When using
the Monte Carlo methods, we believe that future mathematics teachers
should notice that there is always the danger that students will be led
through the problems too quickly, not being allowed the opportunity to
think carefully about what they have done and to move with confidence

from one stage of thinking to another.

3. Topics Suitable for the Monte Carlo Methods

Multiple Choice Test

When Students take a multiple choice quiz in our basic probability
theory, some students are willing to take his chances. Our multiple
choice quiz ask a student to recognize a correct answer among 4 answers
that include 3 wrong answers. Suppose that we take the multiple choice
quiz many times and provide students with an answer key after the quiz
has been taken. We can keep a record of the number of correct answers
obtained each time the quiz is taken.

What are his chances of getting k or more correct answers of those n
questions by guessing?

The three steps for the Monte Carlo method are discussed below.
e Choose a problem and a random device. A way to think of answering a
question by guessing is to draw a ball. Let an urn contain 4 colored balls.
Suppose that n balls are drawn with independently and with replace-
ment from the urn. At this time, we can use the following Pseudocode 1
because we have n Bernoulli trials, with success corresponding to a ball

in a correct answer, failure to a ball in 3 wrong answers.

Pseudocode 1;

[Algorithm to count the number of correct answers]
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[Use a conditional statement to tell whether the answer to each item is
success or failure]
begin
score «— 0
totscore «+ 0
forj—1 to N
begin
genum — RN D(1)
if genum < 0.5 then
score — 1
else score — 0
output totscore « totscore + score

end

end

e Identify the possible outcomes of each trial, and determine the prob-
ability of each outcome. Our experiment consists of drawing a ball n
times, one for each question on the quiz, and then using the answer key
to determine the number of correct answers. At each drawing the prob-
ability of success is %, and the probability of failure is %.

e Compute the simulated answer, and do a large number of trials. Look-
ing at the results of trials with the Monte Carlo method, teachers should
carry out the simulation as a class activity in which each student draws
a ball or generates random number by a computer. Encourage students
to conduct their own table keeping a record obtained from their trials.
Introduce them to estimate the probability of getting k or more correct

answers by the ratio:

The number of getting k or more correct answers
The total number of trials for n 2 k.

Finally, on the mathematical background of students, teacher must al-

low for students to compare the ratio with the theoretical probability
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that get k or more correct answers of n questions by guessing, can be
shown to be Y 7 . C(n, i)g%”_’ fork=0, - ,n.

Distribution of Correct Answers

k n1 no N3
0 5 11
1 20 37
2 12 26 42
3 15 22 60
4 ) 22 33
5 6 4 14
6 2 0 2
7 0 1 1
8 0 0 0
9 0 0 0
10 0 0 0

Trials 50 100 200

Table 1

Table 1 shows a summery of the number of correct answers obtained
from 50, 100, and 200 trials respectively. The summery shows that the

probability of getting 5 or more correct answers of 10 questions (based

on 200 trials) is estimated as 71(—)% = 0.085, which compares with the
theoretical probability E,ICO=5 C(10, k)%k%w_k = 0.0781. Figure 1 shows

that as the number of trials increase, the simulated chances of getting k

correct answers of 10 questions by guessing approaches the theoretical



Teaching probabilistic concepts and principles 173

Experimental and Theoretical Probability
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FIGURE 1

probability.

Definite Integration

The problem of determining the probability of some event, or its math-

ematical expectation, can be reduced to the computation of some inte-
gral. Assume that we want to evaluate a definite integral [ ; f(x)dz. If
the function f(z) fails to have a continuous derivative of moderate or-
der, then the traditional numerical analytic techniques, such as Newton-
Raphson and Simpson’s Rule becomes less popular. In the classroom,
the Monte Carlo methods becomes more impressive.
e Choose a problem and a random device. Develop the use of random
numbers to evaluate a definite integral [ : f(z)dz for a < £ < b. Per-
form independently the Monte Carlo simulation by selecting arbitrary
points lying within the square randomly in the plane. We can use the
Pseudocode 2 with the aid of a computer.
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Pseudocode 2;
[Algorithm to count the points which happen to fall exactly on the ac-
tual area]
[M is a maximum value of a given function FN]
begin
input A,B, and M
forj—1 to N
begin

X=RND(1)x(B-A)+ A
) *

Y = RND(2) x M

If Y < FN(X) then
H=H+1
end

I=8+«Mx(B-A)

output I

end

e Identify the possible outcomes of each trial, and determine the proba-
bility of each outcome. Figure 2  shows the curve and the shaded area.
The actual area S is bounded by the line z = a,z = b,and curve f(z).
Consider the desired area A to line within the square bounded by z =
a,z = b,and M(maximum value of f(z)). Choose at random points in
A and designate the number of points lying inside S. If the point falls
within S, it is considered as a ’success’ n;. If it does not fall in S, it is
considered a 'failure’ ny and simply count in the total count n.

o Compute the simulated answer, and do a large number of trials. When
the number of trials become great, the estimation S of the exact area

f; f(z)dzis Ax - = M x A. If a function f(z) is x3—%.’r2+6m+1,

the exact area of S is

f02'5(m3 - %:1:2 + 6x + 1)dz = 7.578 over the interval 0 < z < 2.5.
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FIGURE 2

For attempting to evaluate the area by the Monte Carlo simulation,
we counted respectively points lying within the square A and the actual
area S randomly by generating random numbers. We obtained a typical
approximate 7.56 of the desired trial 2592 for a total of 3000 samples,
compared with the exact area 7.578. Figure 3 shows that the simulated

area begin to converge as the number of trials increase.
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Birthday Problems

Our birthday problem finds the probability that at least two people in
a group of some people will have the same birthday. We believe that the
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problem creates interest in the classroom. A random number table or
a computer random digit generator lends itself well to this task. Other
sources of random digits include spinners with ten equal divisions and
the last digits in a series of telephone number. We can find that with the
aid of the Monte Carlo method, the birthday problem can be simulated
with little difficulty.[11]

Suppose that given a set of n numbers, each person in a group of k
people choose a number at random from the set.(n > k) Let us define
Ay, to be the event that a group of k people have distinct numbers. If
we write the probability of the event Ag,

P(Ag) = P(:,;k) for k<n
k-1 i
= H(l — ;)
i=1

Since the geometric mean is strictly less than the arithmetic mean,

taking the respective means yields the inequality.

Therefore, the desired upper bound of P(Ag) is given by

P(A) =TS (-5 < (1-55)
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Consider the probability that at least two people in a group of k

people will have the same numbers.

P(There will be at least two repetitions) = 1 — P(Ag)
k-1

1
=1—H(1—;L')

1=1

k k_1
>1-(1-— <
>1-(1 2n) for k<n

Since the birthday problem can be handled in much the same way as
the birthday of the year, we made three tables using the permutation
that can find exact values of the theoretical probability to have a greater
than 60 percent chance that at least two people in the group share the
same birthday, birth week , or birth month.

At least two people share birthday

n k Probability
365 30 0.7063
365 29 0.6810
365 28 0.6545
365 27 0.6269
365 26 0.5982
365 25 0.5687
365 24 0.5383

Table 2
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At least two people share birth month

n k Probability

12 7 0.8886

12 6 0.7772

12 ) 0.6181

12 4 0.4271

12 3 0.2361
Table 3

At least two people share birth week

n k Probability
7 ) 0.8501
7 4 0.6501
7 3 0.3878

Table 4

The tables above show that 4 people is sufficient to give a better than
60 percent chance that at least two people have birthdays on the same
week, 5 people is sufficient on the same month, and 27 people is sufficient
on the same birthday of the year respectively. Since the birth month
problem can be easily applied to solve the other birth problems with the
Monte Carlo methods, we only discuss the birth month problem in the
following.

What is the minimum number of people needed for the probability that

two of them were born on the same month of the year to be 60 percent ?
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In terms of the Monte Carlo method, we will try to have the three
steps.
e Choose a problem and a random device. Use a twelve-sided die, one
side for each month of the year. For the birth month problem, students
can use a graphic calculator or a simple computer software providing

the necessary random number.

Pseudocode 3;
[Algorithm to generate the birth month]
begin
input N
fori «—1to N
output INT (12 RND(1)) + 1

end

o Identify the possible outcomes of each trial, and determine the proba-
bility of each outcome. Assume that a trial consists of rolling the twelve-
sided die independently five times, once for each of the five people in the
group. Count the same side of the die obtained at least twice in five
rolls.

e Compute the simulated answer, and do a large number of trials. The
probability that at least two people share the same birth month to be
60 percent is estimated by the ratio:

Number of the same side of trials obtained at least twice
Number of trials

In each trial, we count the number of the same side obtained at least
twice in five rolls. When the die was tossed 100 times, we got 14 successes
of same side. The probability that at least two people share birth month
to be 60 percent is 0.7. After tossing the die 500 times, we obtained 68
successes of same side die. The probability that in a group of five people

at least two people were born in the same month to be 60 percent is
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estimated as 0.68, which compares with the lower bound of 0.6072 and
the theoretical probability of 0.6181.

4. Accuracy of the Monte Carlo Method

The Monte Carlo method is also subject to some error as all measure-
ments are subject to some error. It is difficult to determine how many
trials should be run for a sufficiently accurate estimate using the Monte
Carlo method. Approaching a problem with the Monte Carlo method
using the same data is different, we might consider that the mean value
is often equal to the solution being sought. In order to illustrate the
general nature of the Monte Carlo methods, we begin the discussion
with a very simple example.

We denote X; (i = 1,---,n) a random variable as a result which is
obtained for each of n independent trials. Let A be an event with a
probability p of occurring. Assume that each random variable X; has
a finite expectation E(X;) = p and a finite variance Var(X;) = o’ If
we let S, = Z?zl X; as the total number of trials in which the event A
occurs, the relative frequency of occurrence of the event A is ‘—9#, which

is a random variable with E(gnﬂ) = p and Var(ﬁnn) =2,

n
The Law of Large numbers says that for € > 0 and § > 0, there exists
a number n of trials such that with probability less than e, the relative
frequency of occurrence of the event A will differ from the probability p

of the occurrence of this event by not less than 4:
P(|§nZL — p| > §) < e for large enough n.

Since %ﬂ means the approximate value obtained for p by the Monte
Carlo method, then the difference %ﬂ — p is the error of the Monte Carlo
method. This means that, with a probability greater than or equal to
1 — ¢, the following inequality holds:

l%" —-p| < # for large enough n,
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which follows from Chebyshev’s Inequality. The relation § ~ % holds.
Letting k = %, the role of the variance of X; is clearly evident as is
that of the number n of trials. Thus, the accuracy of the Monte Carlo
method is determined only by the number of independent trials and by
the variance.

Let us consider the fundamental case in which the distribution of ﬁnn
is approximately Normal from the Central Limit Theorem. Choosing
the confidence level for the estimate of the error with a finite degree
of certainty § = +10 percent of the population mean, we would do
5711-7 = 100 trials. It is clear that to decrease the error by a factor
of 10, it is necessary to increase n by a factor of 100. Therefore, the
Monte Carlo method cannot give any solution of very high accuracy.
Exceptionally when events occur with small probability p, the Poisson
distribution frequently holds for integer values of S,,. The relation p ~ %
become a condition for the Poisson distribution to appear as the limiting
law for S,.

Ordinarily it is rather difficult to estimate the variance o2 prior to
solving the problem. In most practical applications of the Monte Carlo
methods, it is always advisable to reduce this variance as much as possi-
ble, if necessary by employing a special procedure called variance reduc-
ing techniques. H. Kahn[3] says that the Monte Carlo methods to reduce
variance can be sharply dependent upon the probability model and the
techniques used to generate the values of the random variables. If the
problem mandates little variance from trial to trial, then you should use
a large sample size. If the size of the variance is of little consequence,

then a smaller number of trials is appropriate.

5. Conclusion

The Monte Carlo method is a technique for solving problems using

random outcomes of experiment, which in their simplest form, involve
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such activities as drawing balls, rolling dice, or generating the random
number. The Monte Carlo methods can improve directly the solution
of real world problems with a minimal amount of mathematical back-
ground and a reasonable cost in the classrooms. By creating the data
processing, students can challenge a variety of problems encountered in
daily life rather than contrived, 'textbook’ problems. We present some
real world topics as students can tackle in a conventional probability
class until they provide a concrete interpretation of a solution as well
as ways of organizing and analyzing data. The Monte Carlo methods
lead the class into such mathematical activities as exploring, conjectur-
ing, examining, and proving. By employing the Monte Carlo method
in teaching, it is possible to make important probabilistic concepts and
principles accessible to both high school students and future secondary
mathematics teachers. We think that instructional applications of the
Monte Carlo methods promise important new directions in the teaching

and learning of concepts and principles in probability.

Particularly the Pseudocodes can be considered to get a better pic-
ture of problem solving applying the mathematical logic for which given
topics can be modified easily when the data is transferred to a special
programming language. During simulating the topics using the Monte
Carlo methods, students can build more concepts and principles of the-
oretical probability based on random experiences. At this time, we hope
that students take a considerable opportunity to explore and move with

confidence from one stage of thinking to another.
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