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DEDUCTIVE SYSTEMS OF BL-ALGEBRAS

YOUNG BAE JUN AND JUNG M1 Ko*

Abstract. We give characterizations of a deductive system of a
BL-algebra, and discuss how to generate a deductive system by a

set.

1. Introduction

Fuzzy logic grows as a new discipline from the necessity to deal with
vague data and imprecise information caused by the indistinguishability
of objects in certain experimental environments. As mathematical tools
fuzzy logic is only using [0, 1]-valued maps and certain binary operations
* on the real unit interval [0,1] known also as left-continuous ¢-norms.
It took sometime to understand partially ordered monoids of the form
([0,1], <, *) as algebras for [0, 1]-valued interpretations of a certain type
of non-classical logic-the so-called monoidal logic. BL-algebras arise
naturally in the analysis of the proof theory of propositional fuzzy logics.
Indeed, in [3], Hajek introduced the system of basic logic (BL) axioms for
propositional logic and defined the class of BL-algebras (see Definition
2.1). In [4], Ko and Kim investigated some properties of BL-algebras,
and they [5] also studied relationships between closure operators and
BL-algebras.

In this paper, we show that a deductive system of a BL-algebra can

be represented as a union of special sets, and give a characterization
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of a deductive system of a BL-algebra. We discuss how to generate a

deductive system by a set, and investigates some related properties.

2. Preliminaries

A lattice (L; <, A, V,®,~,0,1) is called a residuated lattice if it sat-
isfies the following conditions:
(R1) (L;®,1) is a commutative monoid,
(R2) (Vz,y,z€e L) (z<y=>202<y0z2),
(R3) (Vz,y,2€ L) (x0y<z e <y~ 2).

Definition 2.1. [3] A BL-algebrais a residuated lattice (L;<,A,V,0,~
,0,1) that satisfies the following conditions:
(Bl) (Vz,ye L) (zAy=20(z ~y)),
(B2) (Ve,ye L) (zVy=((z~y) ~y) Ay~ z) ~ z)),
(B3) (Vz,ye L) ((z~y)V(y~z)=1).

Example 2.2. [4] Let X be a nonempty set and let P(X) be the
family of all subsets of X. Define operations ® and ~» by

A®B=ANDB and A~ B=A°UB

for all A, B € P(X), respectively. Then (P(X), C,N, U, ®, ~, 8, X) is
a BL-algebra.

We call P(X) the power BL-algebra of X.

Proposition 2.3. (3, 6] In a BL-algebra (L; <,A,V,0,~,0,1), we
have the following properties:
(p1) (Vz € L) (z =1~ =),
(p2) (Vze L) (1 =z ~ x),
(p3) (Vz,y € L) (z Oy < z,y),
(p4) (Vz,ye L) (z 0y <z Avy),
(

) (
) (
) ( )

p5) (Vz,y € L) (y <z~ y),
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(Vz,ye L
(Ve,ye L
(Vz,ye L
Ve,y € L

(z0y<z~y),
<y e l=zwy),
(g=yel=z~wy=y~ 1),
(zo(z~y) <y,

— N N

(
(Vz,y,2 € L) (z~ (y ~ 2) =y~ (z ~ 2)).
(Vz,y,z€ L) ((z ~ y) » (z~ 2) Sz~ (y ~ 2)),
(Vz,y,2 € L) (x ~ y < (2~ ) ~ (2~ 9)),
(Vz,y,z€ L) (z <y = 2~z <z~ Y, Y~z < T~ 2).

3. Deductive systems of BL-algebras

We begin with the following inequality in a BL-algebra L:
(p14) (Vz,y,2 € L) (z ~ (y ~ 2) < (T~ y) ~ (T~ 2)).

The following example shows that the inequality (p14) does not hold in
a BL-algebra.

Example 3.1. In the Lukasiewicz structure ([0,1], <, min, max, O,
~~+, 0, 1) which is a BL-algebra (see [4]) where

r®y=max{0,z +y—1} and ¢~ y =min{l,1 -z +y},
we have 0.5 ~» (0.4 ~ 0.3) £ (0.5 ~ 0.4) ~ (0.5 ~ 0.3).

Definition 3.2. A BL-algebra L satisfying the inequality (p14) is

said to be implicative.

Example 3.3. The power BL-algebra P(X) of a set X is an implica-
tive BL-algebra.

In what follows, let L denote a BL-algebra unless otherwise specified.

For every ay,as,*+ ,an € L, we define
a if n=1
P(al,CLQ,' v ,an—l\an) = " . '
a; ~ P(ag,as, - ,an—1\as) if n> 1.
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Definition 3.4. [2, 6] A subset D of L is called a deductive system
of L if it satisfies the following conditions:
(dsl) 1 € D,
(ds2) (Vz,ye L) (x € D, P(z\y) € D = y € D).
Lemma 3.5. [4] Let D be a nonempty subset of L. Then D is a
deductive system of L if and only if it satisfies:
(ds3) (Va,b€ D) (a®be D),
(ds4) (Vae D)(Vbe L) (a<b = be D).
Theorem 3.6. If D is a deductive system of L, then
(i) (vz € L)(Vy € D) (P(z\y) € D),
(if) (Vz € L)(Vy1,32 € D) (P(P(y1,52\z)\z) € D).
Proof. (i) Let x € L and y € D. Then
P(y,z\y) = P(z,y\y) = P(z\1) =1 € D,

and so P(z\y) € D.
(ii) Let z € L and y1,y2 € D. Then

IA

P(P(y1\z)\z) by (p9)
P(P(y2,y1\z)\P(y2\7)) by (p12)
= P(y2\P(P(y2,y1\z)\z)) by (p10).

n

IA

It follows from (p10), Lemma 3.5 and (ds2) that
P(P(y1,y2\z)\z) = P(P(y2,y1\z)\z) € D.
This completes the proof. )
Definition 3.7. For any a,b € L, we define
£(a,b) :={z € L | P(a,b\z) = 1}.

Obviously a,b,1 € £(a,b) for all a,b € L.
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Theorem 3.8. Let X be a nonempty set and let P(X) be the power
BL-algebra of X. Then for every subsets A and B of X, we have

P(X) if ANB=19
L£(A,B)=¢ {CCcX|ACC} if ACB,
{UcX|CcU} if AnB=C.
Proof. For every subsets A and B of X, we have

£(A,B) = {CeP(X)|P(4,B\C) =X}
= {CePX)|A~ (B~ C)=X}
= {CeP(X)|AC B~ C}
= {CeP(X)|A0GBCC}
= {CeP(X)|AnBCC}.

This completes the proof. O

Example 3.9. For aset X = {a,b, c}, consider the power BL-algebra
P(X). Then

e £({a},{a}) = £({a}, {a,b}) = £({a},{a,c}) = £({a}, X)
= £({a, b}, {a,c}) = {{a},{a,b},{a,c}, X},
o £({b},{0}) = £({b},{a,b}) = £({b},{b,c})
= £({b}, X) = £({a, b}, {b,c}) = {{v},{a, b}, {b,c}, X},
o £({c},{c}) = £({c},{a,c}) = £({c}, {b,c})
= £({c}, X) = £({a, c}, {b,c}) = {{c}, {a, c}, {b,c}, X},
o £({a,b}, X) = {{a,b}, X},
o £({a,c}, X) = {{a,c}, X},
o £({b,c},X) = {{b,c}, X},
. 2({0} {0}) = £({a}, {c}) = £({b},{c}) = £({a}, {b;c})
£({b},{a,c}) = £({c},{a,b}) = P(X).

Theorem 3.10. Assume that L is implicative and let a,b € L. Then
£(a,b) is a deductive system of L.
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Proof. Let x,y € L be such that z € £(a,b) and P(z\y) € £(a,b).
Then P(a,b\r) = 1 and P(a,b,z\y) = 1. Using (pl), (p8), (p1l) and
(pl4), we get

1 = P(a,b,z\y) = P(a\P(P(b\z)\P(b\y)))
= P(P(a,b\z)\P(a,b\y))
and so y € £(a,b). Hence £(a,b) is a deductive system of L. O

Obviously, if D is a deductive system of L, then D contains £(a,b)
for all a,b € D.

Theorem 3.11. Let D be a nonempty subset of L. Then D is a
deductive system of L if and only if £(a,b) C D for all a,b € D.

Proof. Necessity is straightforward. Assume that £(a,b) C D for all
a,b € D. Note that 1 € £(a,b) C Dforall a,b € D. Let z,y € L be such
that € D and P(z\y) € D. Since P(z\P(P(z\y)\y)) = 1, it follows
that y € £(z, P(z\y)) C D. Hence D is a deductive system of L. O

Theorem 3.12. If D is a deductive system of L, then
D = U{£L(a,b) | a,b € D}.

Proof. Let D be a deductive system of L and z € D. Since z €

£(z,1), we have
D C u{L(z,1) | z € D} C U{£L(a,d) | a,b € D}.

Now let z € U{£(a,b) | a,b € D}. Then there exist y,z € D such that
z € £(y, z). It follows from Theorem 3.11 that z € D which means that
U{£L(a,b) | a,b € D} C D. This completes the proof. O

Corollary 3.13. If D is a deductive system of L, then

D = uU{£(a,1) | a € D}.
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Note that if % is a nonempty family of deductive systems of L, then
D =N is also a deductive system of L (see [4]).

Denote by DS(L) the set of all deductive systems of L. If A C L, we
denote by

(4) = n{D e DS(L) | A C D},

which is called the deductive system generatedby A. If A = {a;,a2, - ,an},
we use {(ay,as, - ,a,) instead of ({a1,az, - ,a,}). The deductive sys-
tem generated by one element a € L will be denoted by (a), and it is easy
to verify that (a) = {z € L | P(a\z) = 1}, which is called a principle

deductive system.

Proposition 3.14. For any subsets A and B of L, the following hold:

i) {1}) = {1} and (0) = {1},
(i) (L) =
(i) ACB 1mp11es (A) C (B),
(iv) (Vo,y € L) (z <y = (y) € (2)),
(v) if A is a deductive system of L, then (A) = A.

Proof. Straightforward. O

Let A C L and construct
(al) Ay = AU{l},
(q2) if Ag is defined, put
Agr1:={y € L |z € A; and P(z\y) € Ax}.

Then 1 € Ag for all k =1,2,--- . Let £ € Ax. Then P(1\z) = z € Ay,

and so £ € Agy1. Therefore we have a chain
A1 CACA3C

Put D =U{A; | k=1,2,---}. Obviously 1 € D. Let z,y € L be such
that z € D and P(z\y) € D. Then z € A, and P(z\y) € A, for some
natural numbers p and q. Without loss of generality we may choose
k = max{p,q}. Then z € Ay and P(z\y) € Ag. Thus y € Ag4; C D,
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i.e., D is a deductive system of L containing A. On the other hand, if
D* is a deductive system of L containing A, then D* contains also Ag
for k =1,2,--- . Hence D is the least deductive system of L containing

A. Therefore we have the following theorem.

Theorem 3.15. Let A C L and let Ay, A, --- be the sets determined
by (ql) and (q2). Then (A) = U{Ax | k=1,2,---}.

Proposition 3.16. In a BL-algebra L, we have the following prop-
erty:

(Vz,y,z € L)(P(z,z\y) = 1, P(2\z) =1 = P(z\y) =1).

Proof. Let x,y,z € L be such that P(z,z\y) = 1 and P(z\z) = 1.
Then P(z\y) € (z) and z € (2). Since (z) is a deductive system of L, it
follows from (ds2) that y € (z), that is, P(z\y) =1 O

Lemma 3.17. Let D € DS(L) and a;,ag, - ,a, € D.
If P(ap, - ,a1\z) € D, thenz € D.

Proof. Straightforward. O
Theorem 3.18. If A is a nonempty subset of L, then

(AY ={z € L| P(an,an-1, " ,a1\z) =1 for some ay,--- ,a, € A}.
Proof. Denote

D:={rx € L|Plan,an-1, " ,a1\z) =1 for some ay,--- ,an € A}.

We first show that D is a deductive system of L. Obviously 1 € D.
Let z,y € L be such that x € D and P(z\y) € D. Then there exist
a‘l"" 7a1n.3b1,"' ,bn E A SuCh that

(1) P(amvam—l’ vt ,al\fE) = 1a

(2) P(bp,bn-1, -+ ,bi\P(z\y)) = 1.
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Using (pl0), (2) implies that
(3) P(z,bn, -+ ,02\P(b1\y)) = 1.
It follows from (1) and (p13) that
(4) 1= P(am,am-1," " ,61\2) < P(@m,am-1,""" ,01,bn," - ,b1\y)

so that P(am,@m-1,"*" s81,bn, -+ ,b1\y) = 1. Hence y € D and D is a
deductive system of L. Clearly A C D. Let E be a deductive system
containing A and let z € D. Then there exist ¢1,cp, -+ ,cn € A such
that

P(Cn, ,Cl\CL') = 1’
and so P(cp, -+ ,c1\z) € E. Using Lemma 3.17, we have z € E and
thus D C E. This completes the proof. a

Theorem 3.19. Let D € DS(L) and a € L. Then
(DU{a}) ={z € L | P(a™\z) € D for some natural number n},
where P(a™\z) = P(a,a,--- ,a\z) in which a occurs n-times.
Proof. Denote
G ={x € L|P(a™\z) € D for some natural number n}.

In order to prove G is a deductive system of L, let z,y € L be such that
z € G and < y. Then there exist a natural number n and v € D such
that P(a"™\z) = u. Using (p10), we see that

(5) P(a™,u\z) = P(u,a™\z) =u ~ P(a"\z) =u~u=1
Using (p13), we know that < y implies
1= P(a",u\z) < P(a", u\y),

and so 1 = P(a"™,u\y) = u ~ P(a™\y), that is, u < P(a™\y). It follows
from (ds4) that P(a™\y) € D so that y € G. This shows that G satisfies
(ds4). Let z,y € G. Noticing that z < P(y\(z © y)), we get P(y\(z ©
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y)) € G, and so there exist a natural number n and v € D such that
v = P(a",y\(z ®y)) = P(y,a"\(z © y)). It follows that

1= P(v,y,a"\(x ©y)) = P(y,a",v\(z O y)) = y ~ P(a",v\(z © y)),
that is,
(6) y < P(a",v\(z 0 y)).

Since y € G, there exist a natural number m and w € D such that
P(a™\y) = w, which implies that

(7)  P(a™ w\y) = P(w,a™\y) =w ~ Pla™\y) =w~w=1.
It follows from (6), (p13) and (p10) that

1= P(a™ w\y) < P(a™, w,a™v\(z Oy))

('LU, v, am’ an\(w @ y))
(w,,a™™\(z O y))

®)

P
P

i

so that 1 = P(w,v,a™*™\(z ®y)). Since v,w € D, it follows from (ds4)
that P(a™*™\(z®y)) € D. This means that Oy € G. Thus G satisfies
condition (ds3), and we have proved that G is a deductive system of L.
As P(a\a) =1 € D, a € G. Let z € D. Then & < P(a\z) by (p5). If
we use condition (ds4), then P(a\z) € D and so x € G. This shows
that DU {a} C G. Finally, let H € DS(L) be such that DU {a} C H. If
£ € G, then there exists a natural number k such that P(a¥\z) € D C H.
Applying a € H and using condition (ds3), we have

(9) P(a,a*\z) ®a = P(a"\z) ®a € H.

Since P(a,a*\z) @ a < P(a*1\z), we get P(a*"\z) € H by (ds4).
Repeating the procedure above, we conclude that z € H. This proves
that G C H, and thus G is the least deductive system containing D and
a. This completes the proof. 0
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4. Concluding remarks

In this paper, we discussed how to generate a deductive system by a
set, and investigated some related properties. We gave a characteriza-
tion of a deductive system. The results of this paper will be devoted to
study of MV-algebras, lattice implication algebras, Lukasiewicz’ logic,
Godel’s logic and the product logic, which are different extensions of
basic logic. Moreover, it will be devoted to the problem to reveal the
logical content of various methods from fuzzy logic which play a specific
role in fuzzy control and expert systems, e.g. Zadeh’s compositional
rule of inference, generalized modus ponens, min-composition, general-
ized quantification, etc. Some important issues for future work are: (i)
developing the properties of a deductive system, (ii) defining new de-
ductive systems which are related to given deductive systems, and (iii)

finding useful results on the new structures.
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