PRIME IDEALS IN SUBTRACTION ALGEBRAS

EUN HWAN ROH

Abstract. Prime elements and \land -irreducible elements are introduced, and related properties are investigated.

1. Introduction

B. M. Schein [8] considered systems of the form $(\Phi; \circ, \setminus)$, where Φ is a set of functions closed under the composition "o" of functions (and hence $(\Phi; \circ)$ is a function semigroup) and the set theoretic subtraction "\" (and hence $(\Phi; \setminus)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [9] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y. B. Jun et al. [5] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. In [4], Y. B. Jun and H. S. Kim established the ideal generated by a set, and discussed related results. Y. B. Jun and K. H. Kim [6] introduced the notion of prime and irreducible ideals of a subtraction algebra, and gave a characterization of a prime ideal. They also provided a condition for an ideal to be a prime/irreducible ideal. In

Received July 4, 2006. Revised August 25, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 03G25, 06B10, 06D99.

Key words and phrases : prime element, prime ideal, \land -irreducible element, \land -irreducible ideal.

[†] This paper was supported by the research fund of Chinju National University of Education, 2006.

this paper, we introduce the notion of prime elements and \land -irreducible elements in subtraction algebras, and investigate several properties.

2. Preliminaries

By a subtraction algebra we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

(S1)
$$x - (y - x) = x$$
;

(S2)
$$x - (x - y) = y - (y - x);$$

(S3)
$$(x-y)-z=(x-z)-y$$
.

The last identity permits us to omit parentheses in expressions of the form (x-y)-z. The subtraction determines an order relation on X: $a \le b \Leftrightarrow a-b=0$, where 0=a-a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \le)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0,a] is a Boolean algebra with respect to the induced order. Here $a \land b = a - (a-b)$; the complement of an element $b \in [0,a]$ is a-b; and if $b,c \in [0,a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c))$$

= $a - ((a - b) - ((a - b) - (a - c))).$

In a subtraction algebra, the following are true (see [5, 6]):

(a1)
$$(x-y) - y = x - y$$
.

(a2)
$$x - 0 = x$$
 and $0 - x = 0$.

(a3)
$$(x-y)-x=0$$
.

(a4)
$$x - (x - y) \le y$$
.

(a5)
$$(x-y) - (y-x) = x - y$$
.

(a6)
$$x - (x - (x - y)) = x - y$$
.

(a7)
$$(x-y) - (z-y) \le x-z$$
.

(a8) $x \le y$ if and only if x = y - w for some $w \in X$.

- (a9) $x \le y$ implies $x z \le y z$ and $z y \le z x$ for all $z \in X$.
- (a10) $x, y \le z$ implies $x y = x \land (z y)$.
- (a11) $(x \wedge y) (x \wedge z) \leq x \wedge (y z)$.

Definition 2.1. [5] A nonempty subset A of a subtraction algebra X is called an *ideal* of X if it satisfies

- (i) $0 \in A$
- (ii) $(\forall x \in X)(\forall y \in A)(x y \in A \Rightarrow x \in A)$.

Lemma 2.2. [6, Lemma 3.2] An ideal A of a subtraction algebra X has the following property:

$$(\forall x \in X)(\forall y \in A)(x \le y \Rightarrow x \in A).$$

Definition 2.3. Let X be a subtraction algebra and let S be a subset of X. Defined the ideal *generated* by S to be the intersection of all ideals of X which contain S, and denoted by $\langle S \rangle$.

Clearly, a principal ideal $\langle a \rangle$ generated by a is $\{x \in X | x \leq a\}$ (see [5, Theorem 3.4]). For any subset A, B of a subtraction algebra X, we define

$$A \wedge B = \{x \wedge y | x \in A, y \in B\},\$$

where $x \wedge y = glb\{x, y\}$.

Definition 2.4. [6] Let X be a subtraction algebra and A an ideal of X. A is said to be *prime* if for any $a,b \in X$, $a \wedge b \in A$ implies $a \in A$ or $b \in A$. A is said to be \land -irreducible if for any ideals B,C of X, $A = B \wedge C$ implies A = B or A = C.

Lemma 2.5. [6, Theorem 3.7] Let P be an ideal of a subtraction algebra X. Then the following are equivalent.

- (i) P is a prime ideal of X.
- (ii) For any ideals A and B of X, $A \land B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

3. Main Results

Lemma 3.1. Let X be a subtraction algebra and $a, b \in X$. Then $a \leq b$ if and only if $\langle a \rangle \subseteq \langle b \rangle$.

Proof. Straightforward.

Theorem 3.2. Let X be a subtraction algebra and $a, b \in X$. Then $\langle a \rangle \wedge \langle b \rangle = \langle a \wedge b \rangle$.

Proof. Let $x \in \langle a \rangle \land \langle b \rangle$, then $x = a_1 \land b_1$ for some $a_1 \in \langle a \rangle$ and $b_1 \in \langle b \rangle$. Since $a_1 \leq a$ and $b_1 \leq b$, we have $x = a_1 \land b_1 \leq a \land b$, which implies $x \in \langle a \land b \rangle$.

Conversely, let $y \in \langle a \wedge b \rangle$, then $y \leq a \wedge b$. But $y \leq a \wedge b \leq a$ and $y \leq a \wedge b \leq b$. Hence $y \in \langle a \rangle$ and $y \in \langle b \rangle$. If $y \in \langle a \rangle$, then there exists t_1 (say) such that $y = t_1 \in \langle a \rangle$. Similarly, $y = t_2 \in \langle b \rangle$ and so $y = y \wedge y = t_1 \wedge t_2 \in \langle a \rangle \wedge \langle b \rangle$. This completes the proof.

Definition 3.3. Let $a(\neq 0)$ and b be elements of a subtraction algebra X. We define a as a \land -factor of b if $b = a \land c$ for some $c \in X$. A non-zero element $p \in X$ is called a *prime element* if p is a \land -factor of $a \land b$ implies p is a \land -factor of a or p is a \land -factor of b.

Clearly, a is a \land -factor of b if and only if $b \le a$.

We call a subtraction algebra *principal* if all its ideals are principal.

Theorem 3.4. Let X be a principal subtraction algebra and $q \in X$. Then q is a prime element of X if and only if $\langle q \rangle$ is a prime ideal of X.

Proof. Suppose that $q(\neq 0)$ is a prime element of X. Let A and B be ideals of X. Assume that $A \wedge B \subseteq \langle q \rangle$. Since X is principal, there exist $a, b \in X$ such that $\langle a \rangle = A$ and $\langle b \rangle = B$. So $\langle a \rangle \wedge \langle b \rangle \subseteq \langle q \rangle$. By Theorem 3.2, we have $\langle a \wedge b \rangle \subseteq \langle q \rangle$. Using Lemma 3.1, we have $a \wedge b \leq q$ and hence $a \wedge b = q \wedge (a \wedge b)$. This implies that q is a \wedge -factor of $a \wedge b$ and by assumption q is a \wedge -factor of a or q is a \wedge -factor of b. Therefore,

 $a \leq q$ or $b \leq q$, and so $A = \langle a \rangle \subseteq \langle q \rangle$ or $B = \langle b \rangle \subseteq \langle q \rangle$. It follows from Lemma 2.5 that $\langle q \rangle$ is a prime ideal.

Conversely, suppose that $\langle q \rangle$ is a prime ideal and q is a \wedge -factor of $a \wedge b$ for $a, b \in X$. Then $a \wedge b \leq q$. By Lemma 3.1 and Theorem 3.2, we have $\langle a \rangle \wedge \langle b \rangle \subseteq \langle p \rangle$. Since $\langle q \rangle$ is a prime ideal, it follows from Lemma 2.5 that $\langle a \rangle \subseteq \langle q \rangle$ or $\langle b \rangle \subseteq \langle q \rangle$, so that by Lemma 3.1 $a \leq q$ or $b \leq q$. Consequently, q is a \wedge -factor of a or q is a \wedge -factor of b, ending the proof.

Definition 3.5. Let X be a subtraction algebra and $q \in X$. q is said to be \land -irreducible if for all $x, y \in X$, $q = x \land y$ implies q = x or q = y.

Theorem 3.6. Let X be a principal subtraction algebra and $q \in X$. Then q is a \land -irreducible element of X if and only if $\langle q \rangle$ is a \land -irreducible ideal of X.

Proof. Suppose that $\langle q \rangle$ is a \wedge -irreducible ideal of X. Let $x, y \in X$. Assume that $q = x \wedge y$. Then $\langle q \rangle = \langle x \wedge y \rangle = \langle x \rangle \wedge \langle y \rangle$. Since $\langle q \rangle$ is a \wedge -irreducible ideal, we have $\langle q \rangle = \langle x \rangle$ or $\langle q \rangle = \langle y \rangle$. Hence q = x or q = y.

Conversely, suppose that q is a \wedge -irreducible element of X. Let A and B be ideals of X. Assume that $\langle q \rangle = A \wedge B$. Since X is principal, there exist $a,b \in X$ such that $\langle a \rangle = A$ and $\langle b \rangle = B$. Therefore $\langle q \rangle = \langle a \rangle \wedge \langle b \rangle = \langle a \wedge b \rangle$. This implies $q = a \wedge b$, and so q = a or q = b. Hence $\langle q \rangle = \langle a \rangle = A$ or $\langle q \rangle = \langle b \rangle = B$. The proof is completed.

A non-empty subset S of a subtraction algebra X is said to be \land -closed if $x \land y \in S$ whenever $x, y \in S$.

Lemma 3.7. [3, Theorem 3.9] Let X be a subtraction algebra, S a non-empty subset of X and A an ideal of X. If S is \land -closed such that $A \cap S = \emptyset$, then there is a maximal ideal P of X such that $A \subseteq P$ and $P \cap S = \emptyset$. Moreover P is a prime ideal.

Since $\{a\}$ is \land -closed for any $a \in X$, by Lemma 3.7 we have:

Corollary 3.8. Let X be a subtraction algebra. If A is an ideal of X and $a \notin A$ with $a \neq 0$, then there is a prime ideal P_a such that $A \subseteq P_a$ and $a \notin P_a$.

References

- [1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
- [2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., Vol. 25, second edition 1984; third edition, 1967, Providence.
- [3] Y. B. Jun, Annihilators of subtraction algebras, Honam Mathematical J. 27 (2005), No. 3, 333-341.
- [4] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn.,Online, e-2006 (2006), 1081-1086.
- [5] Y. B. Jun, H. S. Kim and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. Online e-2004 (2004), 397-402.
- [6] Y. B. Jun and K. H. Kim, Prime and irreducible ideals in subtraction algebras, Internat. J. Math. and Math. Sci., (submitted)
- [7] Y. H. Kim and E. H. Roh, Neutral subtraction algebras, Honam Mathematical J. 28 (2006), No. 1, 23-29.
- [8] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169.
- [9] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.

Eun Hwan Roh, Department of Mathematics Education, Chinju National University of Education, Jinju 660-756, Korea

E-mail: ehroh@cue.ac.kr