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ON THE HIGHER ORDER KOBAYASHI METRICS?
Jong Jin Kimf, Jeong Kyun KIM AND JEONG SEUNG LEE

Abstract. The purpose of this note is to prove some properties re-
lated to the higher order Kobayashi metrics(resp. pseudodistances)
as the counterpart for the usual Kobayashi metrics(resp. pseudodis-

tances).

1. Introduction

Kobayashi([5]) initiated studying his pseudodistance and Royden pub-
lished the infinitesimal form in [7] as a modification of the Carathéodory
metric which has a number of advantages. The infinitesimal form that
is called as the Kobayashi metric has been developed by many mathe-
maticans. The higher order Kobayashi metric is introduced in [9] by Yu
as the generalization of the Kobayashi metric. Nikolov([6]) also investi-
gated the higher order Kobayashi metric.

We first introduce some notations which are used in the sequel. By
N and C we denote the set of natural numbers and the set of complex
numbers, respectively. Also, by F§ and K we denote the Carathéodory -
metric and the usual Kobayashi metric for some domain €}, respectively.
Moreover, by a domain we mean the open and connected set. We will
also use the notations <,> and || - || for the usual inner product and

norm on complex Euclidean spaces, respectively.
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2. The higher order Kcbayashi metrics

Let D C C" be a domain and denote by O(A, D) the space of all
holomorphic mappings from the unit disk A € C into D. For t € D, we
mean by O(A, D) the set {p € O(A, D) | p(0) = t}.

For each m € N and (z,X) € D x C", the m-th order Kobayashi
metric is defined by

KP(z,X) = inf{|a|™} | 3 € O(A, D) s.t. v{yp) > m, ™ (0) = mlaX}

where v(¢) stands for the order of vanishing of ¢ — ¥(0) at 0. Clearly

K} (2, X) is the usual Kobayashi metric.

Proposition 2.1. ([4][9]) Let D ¢ C™ be a domain. Then for each
m > 1, the following hold;

(1) K3 has the length decreasing property. In particular, K7} is
biholomorphically invariant. o

(2) K7 = K}, the usual Kobayashi metric for the unit disc A.

(3) F&(2,X) < KMz, X) < KL(2,X) for all (2,X) € D x C™.

(4) K5 (2, pX) = |plKF (2, X) for all (z,X) € DxC" and € C.

A set A C CFis called a balanced set if Az € A for arbitrary A € A
and z € A.

Theorem 2.2. Let G C C" be a balanced pseudoconvex domain
given by G := {z € C" | h(z) < 1} with Minkowski function h, ie., h :
C™ — [0, 00) is a plurisubharmonic function! for which h(A\z) = |A|h(z)
for all X € C and z € C". Then we have K30, X) = h(X) for all X €
cn.

Proof To show that K7 (0, X) < h(X), let us assume that h(X) # 0.
If we define a map ¢ : A — G by ¢(A) = A™X/h(X), then we have
X

¢ € Og(A, G, v(¢) > m and ™ (0) = mlﬁﬁ.

'Refer [2][3] for plurisubharmonic functions and more their informations



On the higher order Kobayashi metrics* 515

Now let us consider the case h(X) = 0. For any ¢ > 1, if we define a
map ¢ : A — G by ¢4(A) = tA™ X, then we know that

$1 € Oo(8, G), (@) > m and ¢{™ (0) = mitX.
It follows from this fact that
KZ2(0,X) < -1— — 0 as t — oo.

Thus in either cases, the inequality K% (0, X) < h(X) holds.
Conversely, let ¢ € Op(A, G) for which

v(¢) > m and ¢"™ (0)a = m!X (a > 0).
If we define a map ¢ : & — C" by

() i 2 ifA#£0
T d™O =

m!

¢

then we have ¢ € O(A,C") and ¢(A) = A"@()) for all A € A. On the
other hand, since 1 > h(¢(\)) = |A|™h($(N)) for all A\ € A and hodisa
subharmonic function on A, it follows from the maximum principle for

subharmonic function that ho ¢ < 1 on A. Hence
1

ml—h(X) = h(¢"™(0)) = h(ml$(0)) = mi(h o $)(0) < m!
and so h(X) < . By the assumption for ¢ and «, we obtain h(X) <
K7(0,X). 0

Let B C C" be an open unit ball with center 0 in C". Then the
Minkowski function for B is the usual Euclidean norm. Recall that B
is a balanced pseudoconvex domain and K3} is biholomorphic invariant.
Thus we have the following(cf {4]);

Corollary 2.3. Let B C C" be an open unit ball in C" with center

0. Then we have

2l [z X) P2 1°
L=1l=l]? - (= 1lz11%)?

Kg(z X) =

for all (z,X) € B x C™,
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Let G and D be domains in C™. A holomorphic map 7 : G — D is
called a holomorphic covering if for any point z € D there exists an open
neighborhood U of 2z with the property that each connected components

of 7~1(U) is mapped biholomorphically onto U by 7.

Theorem 2.4. Let G and G be domains in C" and let 7 : G — G
be a holomorphic covering map?. Then for each (5, X) € G x C* we

have the following
KZ(p, X) = K¢ (n(p), dm(p) X).

Proof By the holomorphic contraction property (Proposition 2.1),

we have
KB, X) 2 K&(n(p), dn(p)X).

Let us now show the reverse inequality. To do this, let € > 0 be arbitrary
and let ¢ € Or) (4, &) for which v(¢) > m, "™ (0)n = mldr(p)X and
0 <n < KZ(m(p),dr(p)X)+e. Then there is a lifting ¢ € O(A, G) such
that To¢ = ¢ and ¢(0) = 5. It hence suffices to show that v(¢) > m and
™) (0)n = m!X. If so, then by the definition of m-th order Kobayashi
metric, we have K(ém) (p,X) < n. Since 0 < n < KZ(n(p),dr(p)X) + ¢

and e was arbitrary, the following inequality holds;
K5, X) < Kg (n(p), dn(p)X),

which is our claim.

It follows from 1(¢) > m and the differential of ¢ = 7 o ¢ that
v(¢) > m and ¢!"™(0) = dr ()™ (D). Hence we obtain

midr()X = ¢ (0)n = dr(5)3™ (O)n.

But since 7 is locally biholomorphic, ¢(™ (0)n = mlX. So we have the

required assertion. [

*Refer [1][8] for a covering map and more informations
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3. The higher order Kobayashi distances

The higher order Kobayashi metric is uppersemicontinuous([4]). So
it can be used to define the length of a piecewise C'l-curve and then the
minimal length of all such curves connecting two fixed points will yield

a new pseudodistance.

For a domain D C C7, let us define the K7} -length of a piecewise
Cl-curve o : [0,1] — D by

1
)= [ KBlalt). ().

Then Ly, (a) € [0,00) and so we may define a map k75 : D x D — R,
which is called the integrated form of K7}, by

kD (z,w) = inf Ly ()

where the infimum is taken over all piecewise C'-curves o joining z and

w.

Proposition 3.1. ([4]) Let D C C" be a domain. Then kT is a
pseudodistance on D.

We call k7 the m-th order Kobayashi pseudodistance on D.

Let B C C" be the open unit ball with center 0 and let z,w € B.
Then by Corollary 2.3,

1
kB (z,w) = igf/ KZ(a(t),d (t))dt

_ g [0 <o, o) > )
= f/ [1—na T e@pr | %

where the infimum is taken over all piecewise C'-curves o joining z and

w. Hence, as expected from Lempert’s Theorem([3]), the following holds;

Corollary 3.2. Let B C C™ be the open unit ball with center 0.
Then we have k}(z,w) = kg(z,w) for all z,w € B. Here kg stands for

the usual Kobayashi distance for B.
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Proposition 2.1 and the definition of k7 induce the following

Proposition 3.3. ([4]) Let Q ¢ C! and D C C" be two domains. If
f : €0 — D is a holomorphic map, then k& (z,w) > kP (f(2), f(w)) for
any z,w € ). That is, k) has the distance decreasing property under

holomorphic mappings.

Theorem 3.4. Let 7 : G — G bea holomorphic covering map, and
let p,q € G and p € G such that n(p) = p. Then the following holds;
k(p,q) = inf kZ(p,q).
& (p,q) et &, q)

Proof By the holomorphic contraction property(Proposition 3.3),

we have

kG (pa) < inf  kE(P, ).
qem—

(@) ‘
Hence to show the reverse inequality, suppose that there exists an € > 0

such that the inequality

k& (p,q) +2¢ < inf  EZ(p,q)
gen—(q)

holds. Then by the definition of k7 (p, q), there is a piecewise Cl-curve

« : [0,1] — G connecting p and ¢ such that

| KB, < 1B+

Since 7 : G — G is a holomorphic covering, there are a § € 77 1(q)
and a piecewise Cl-curve @ : [0,1] — G connecting p and ¢ such that
TOoOQ=q.

On the other hand, by Theorem 2.4 for m-th order Kobayashi metric,

we have

r1

1
KZla,a'0)d = [ KB((moa)®) (roa) @)
0 0

1
_ /g K7 (a(t), & (1))dt.
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Hence we have

1

which is a contradiction to our assumption. [J
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