Experimental and Computational Studies on Particle Behavior in High Temperature Gas with the Various Temperatures of a Solid Wall

고체의 벽면온도에 따른 고온가스 내의 입자거동에 대한 실험 및 수치해석 연구

  • 최재혁 (한국원자력연구소, 원자력수소사업추진단) ;
  • 이기영 (한국원자력연구소, 원자력수소사업추진단) ;
  • 윤두호 (한국해양대학교, 기관시스템공학부) ;
  • 윤석훈 (창원기능대학, 컴퓨터응용 기계설계학과) ;
  • 최현규 (군산대학교, 동력기계시스템공학부) ;
  • 최순호 (한국해양대학교, 기관시스템공학부)
  • Published : 2006.05.01

Abstract

The effect of a wall temperature on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. The fuel for the flames was an ethylene ($C_2H_4$). The surrounding oxygen concentration was 35% with surrounding air temperatures of $T_a=600K$. In the study, three different wall temperatures. $T_w$=300, 600, 800K, were selected as major test conditions. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results showed that the maximum soot volume fractions at $T_w$=300, 800 K were $8.8{\times}10^{-6},\;9.2{\times}10^{-6}$, respectively. However, amount of soot deposition on wall surface was decreased because of lower temperature gradient near the wall with increasing wall temperature. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results from the numerical simulation successfully predicted the differences in the motion of soot particles by different wall temperature near the burner surface and are in good agreement with observed soot behavior that is, the 'soot line', in microgravity.

Keywords

References

  1. P.J. Hilts, 'New York Times', pp.A1, 1993
  2. R. Viskanta, and M.P. Menguc, 'Radiation Heat Transfer in Combustion Systems', Prog. of Energy Combust. Sci. Vol.13, pp.97-160, 1987 https://doi.org/10.1016/0360-1285(87)90008-6
  3. P. Adomeit and U. Renz, 'Deposition of Fine Particles from a Turbulent Liquid Flow: Experiments and Numerical Predictions', Chemical Eng. Sci., Vol.51, No.13, pp.3491-3503, 1996 https://doi.org/10.1016/0009-2509(95)00402-5
  4. D.G. Thakurta, M. Chen, J.B. Mclaughlin, and K. Kontomaris, 'Thermophoretic Deposition of Samll Particles in a Direct Numerical Simulation of turbulent Channel Flow', Int. J. of Heat & Mass Transfer Vol.41, pp.4167-4182, 1998 https://doi.org/10.1016/S0017-9310(98)00135-5
  5. R. Tsai, L.J. Liang, 'Correlation for Thermophoretic Deposition of Aerosol Particles onto Cold Plate', J. of Aerosol Sci., Vol.32, pp.473-487, 2001 https://doi.org/10.1016/S0021-8502(00)00095-1
  6. R. Dobashi, Z.W. Kong, A. Toda, N. Takaashi, M. Suzuki, and T. Hirano, 'Mechanism of Smoke Generation in a Flickering Pool Fire', Proc. of 6th Fire Safety Science, pp.255-264, 1999
  7. H, Ono, R. Dobashi and T. Sakuraya, 'Thermophoretic Velocity Measurement of Soot Particles under a Microgravity Condition', Proc. Combustion Insitute, Vol.29, pp.2375-2382, 2002
  8. J.H. Choi., O. Fujita., T., Tsuiki., J. Kim and S.H. Chung., 'A Study of the Effecct of Oxygen Concentration on the Soot Deposition Process in a Diffusion Flame along a Solid Wall by In-Situ Observation in Microgravity', Int. J. of JSME(B), Vol.48, No.4, pp.839-848. 2005
  9. J.H. Choi., O. Fujita., T., Tsuiki., J. Kim and S.H. Chung., 'In-situ Observation of the Soot Deposition Process on a Solid Wall with a Diffusion Flame along the Wall', Int. J. of JSME(B), Vol.49, No.1, pp.167-175, 2006
  10. 최재혁, 후지타오사무, '미소중력환경을 이용한 벽면근방 확산화염내 매연부착거동의 원위치 관찰', 한국마린엔지니어링학회지, 제29권, 8호, pp.907-914, 2005
  11. Laser Handbook (in Japanese), 丸善, pp.239, 1993
  12. 최재혁, 후지타 오사무, '미소중력환경내의 벽면근방 확산화염 특성에 관한 수치해석', 한국마린엔지니어링학회지, 제30권, 1호, pp. 140-149, 2006
  13. F.A. Williams, Combustion Theory (2th), The Benjamin Cummings Publishing Company, 1985
  14. S. Mahalingam, B.J. Cantwell, and J.H. Ferziger, 'Non-premixed Combustion: Full Numerical Simulation of a Coflowing Axisymmetric Jet, Inviscid and Viscous Stability Analysis', Report TF-43, Thermoscience Div. Stanford University, California, 1989
  15. R.J. Kee, F.M. Rupley, E. Meeks, and J.A. Miller, 'CHEMKIN-III: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics', Report SAND96-8216, Sandia National Lab., Livermore, CA, 1996
  16. R.J. Kee, J. Warnatz, and J.A. Miller, 'A FORTRAN Computer Code Pakage for the Evaluation of Gas Phase Viscosities, Conductivities and Diffusion Coefficients', Report SAND 83-8209, Sandia National Lab., Livermore, CA, 1996
  17. L. Waldmann, 'On the Motion of Spherical Partiticles in Nonhomogeneous Gases', in Rarefied Gas Dynamics, Academic Press, pp. 323-344, 1961
  18. H. Ito, O. Fujita, K. Ito, 'Agglomeration of Soot Particles in Diffusion Flames under Microgravity', Combust. Flame, Vol.99, pp. 363-370, 1994 https://doi.org/10.1016/0010-2180(94)90142-2
  19. O. Fujita and K. Ito, 'Observation of Soot Agglomeration Process with Aid of Thermophoretic Force in a Microgravity Jet Diffusion Flame', Experimental Thermal and Fluid Sci., Vol.26, Issues2-4, pp.305-311, 2002 https://doi.org/10.1016/S0894-1777(02)00141-3
  20. L. Talbot, R.K. Cheng, R.W. Schefer and D.R. Willis, 'Thermophoresis of Particles in a Heated Boundary Layer', J. of Fluid Mech., Vol. 101, pp.737-758, 1980 https://doi.org/10.1017/S0022112080001905
  21. J.R. Brock, 'On the Theory of Thermal Forces Acting on Aerosol Particles', J. of Colloid Sci., Vol.17, pp.768-780, 1962 https://doi.org/10.1016/0095-8522(62)90051-X