Solubility Enhancement of Flavonoids by Cyclosophoraose Isolated from Rhizobium meliloti 2011

  • Kang Si-Mook (Department of Advanced Technology Fusion, Konkuk University) ;
  • Lee Sang-Hoo (Bio/Molecular Informatics Center) ;
  • Kwon Chan-Ho (Department of Microbial Engineering, Konkuk University) ;
  • Jung Seun-Ho (Department of Microbial Engineering, Bio/Molecular Informatics Center, Department of Advanced Technology Fusion, Konkuk University)
  • Published : 2006.05.01

Abstract

Cyclosophoraose (cyclic $\beta-(1,2)-glucan$, Cys) isolated from Rhizobium meliloti, a soil microorganism, was used as a solubility enhancer for flavonoids. The complexes of the cyclic oligosaccharide with flavonoids were confirmed through $^1H$ nuclear magnetic resonance (NMR) spectroscopic analysis. Flavonoids solubilized by Cys were quantitatively analyzed through high-performance liquid chromatography (HPLC). Among the flavonoids tested, the solubility of naringenin was greatly enhanced by Cys, compared with other compounds. The solubility of naringenin was enhanced about 7.1-fold by adding 10 mM Cys, compared with a control. $^1H$ NMR spectroscopic analysis indicated that the H-6 and H-8 protons, which are located on the A ring of naringenin, were greatly shifted upfield upon the complexation with Cys. This result suggested that Cys showed a regioselective interaction with the naringenin molecule upon the complexation, resulting in the solubility enhancement of naringenin.

Keywords

References

  1. Breedveld, M. W. and K. J. Miller. 1994. Cyclic ${\beta}$-glucans of members of the family Rhizobiaceae. Microbiol. Rev. 58: 145-161
  2. Breedveld, M. W. and K. J. Miller. 1995. Synthesis of glycerophosphorylated cyclic (1,2)-beta-glucans in Rhizobium meliloti strain 1021 after osmotic shock. Microbiology 141: 583-588 https://doi.org/10.1099/13500872-141-3-583
  3. Breedveld, M. W., L. P. T. M. Zevenhuizen, and A. J. B. Zehnder. 1990. Excessive excretion of cyclic ${\beta}$-(1,2)-glucan by Rhizobium trifolii TA-1. Appl. Environ. Microbiol. 56: 2080-2086
  4. Choi, Y., C. Yang, H. Kim, and S. Jung. 2000. Molecular dynamics simulations of cyclohenicosakis-[($1{\to}2$)-beta-$_D$-gluco-henicosapyranosyl], a cyclic ($1{\to}2$)-beta-$_D$-glucan (a 'cyclosophoraose') of DP 21. Carbohydr. Res. 326: 227-234 https://doi.org/10.1016/S0008-6215(00)00050-1
  5. Ficarra, R., S. Tommasini, D. Raneri, M. L. Calabro, M. R. Di Bella, C. Rustichelli, M. C. Gamberini, and P. Ficarra. 2002. Study of flavonoids/${\beta}$-cyclodextrin inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. J. Pharm. Biomed. Anal. 29: 1005-1014 https://doi.org/10.1016/S0731-7085(02)00141-3
  6. Higuchi, T. and K. A. Connors. 1965. Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4: 117-212
  7. Jung, Y., S. Lee, S. R. Pail, and S. Jung. 2004. Cyclosophoraose as a chiral stationary phase for enantioseparation. J. Microbiol. Biotechnol. 14: 1338-1342
  8. Kwon, C., Y. Choi, N. Kim, J. Yoo, C. Yang, H. Kim, and S. Jung. 2000. Complex forming ability of a family of isolated cyclosophoraoses with ergosterol and its Monte Carlo docking computational analysis. J. Incl. Phenom. 36: 55-65 https://doi.org/10.1023/A:1008050432556
  9. Kwon, M. J., S. L. Park, S. K. Kim, and S. W. Nam. 2002. Overproduction of Bacillus macerans cyclodextin glucanotransferase in E. coli by coexpression of GroEL/ES chaperone. J. Microbiol. Biotechnol. 12: 1002-1005
  10. Lee, S., C. Kwon, Y. Choi, D. Seo, H. Kim, and S. Jung. 2001. Inclusion complexation of a family of cyclosophoraoses with indomethacin. J. Microbiol. Biotechnol. 11: 463-468
  11. Lee, S., D. Seo, H. Kim, S. Jung. 2001. Investigation of inclusion complexation of paclitaxel by cyclohenicosakis-($1{\to}2$)-(${\beta}-_D$-glucopyranosyl), by cyclic-$({1{\to}2)-{\beta}_D$-glucans (cyclosophoraoses), and by cyclomaltoheptaoses (${\beta}$-cyclodextrins). Carbohydr Res. 334: 119-126 https://doi.org/10.1016/S0008-6215(01)00178-1
  12. Lee, S., D. Seo, H. Park, Y. Choi, and S. Jung. 2003. Solubility enhancement of a hydrophobic flavonoid, luteolin by the complexation with cyclosophoraoses isolated from Rhizobium meliloti. Antonie van Leeuwenhoek 84: 201-207 https://doi.org/10.1023/A:1026075215921
  13. Lee, S., H. Park, D. Seo, Y. Choi, and S. Jung. 2004. Synthesis and characterization of carboxymethylated cyclosophoraose, and its inclusion complexation behavior. Carbohydr. Res. 339: 519-527 https://doi.org/10.1016/j.carres.2003.11.011
  14. Lee, S. and S. Jung. $^{13}C$ NMR spectroscopic analysis on the chiral discrimination of N-acetylphenylalanine, catechin and propranolol induced by cyclic-$(1{\to}2)-{\beta}-_D$-glucans (cyclosophoraoses). Carbohydr. Res. 337: 1785-1789 https://doi.org/10.1016/S0008-6215(02)00286-0
  15. Lee, S. and S. Jung. 2003. Enantioseparation using cyclosophoraoses as a novel chiral additive in capillary electrophoresis. Carbohydr. Res. 338: 1143-1146 https://doi.org/10.1016/S0008-6215(03)00083-1
  16. Lin, J.-Q., S.-M. Lee, and Y.-M. Koo. 2005. Modeling and simulation of simultaneous saccharification and fermentation of paper mill sludge to lactic acid. J. Microbiol. Biotechnol. 15: 40-47
  17. Miller, K. J., E. P. Kennedy, and V. N. Reinhold. 1986. Osmotic adaptation by gram-negative bacteria: Possible role for periplasmic oligosaccharides. Science 231: 48-51 https://doi.org/10.1126/science.3941890
  18. Mimura, M., S. Kitamura, S. Gotoh, K. Takeo, H. Urakawa, and K. Kajiwara. 1996. Conformation of cyclic and linear $(1{\to}2)-{\beta}-_D$-glucans in aqueous solution. Carbohydr. Res. 289: 25-37 https://doi.org/10.1016/0008-6215(96)00134-6
  19. Park, C., Y.-H. Choi, H.-J. Shin, H. Poo, J. J. Song, C.-J. Kim, and M.-H. Sung. 2005. Effect of high-molecular-weight-poly-${\gamma}$-glutamic acid from Bacillus subtilis (chungkookjang) on Ca solubility and intestinal absorption. J. Microbiol. Biotechnol. 15: 855-858
  20. Qi, Q. and W. Zimmermann. 2005. Cyclodextrin glucanotransferase: From gene to applications. Appl. Microbiol. Biotechnol. 66: 475-485
  21. Ryu, J.-Y. and H.-G. Hur. 2005. Comparative analyses of flavonoids for nod gene induction in Bradyrhizobium japonicum USDA110. J. Microbiol. Biotechnol. 15: 1280-1285