DOI QR코드

DOI QR Code

Effect of Anodic Gas Compositions on the Overpotential in a Molten Carbonate Fuel Cell

  • Lee C.G. (Dept. of Chemical Engineering, Hanbat National University) ;
  • Kim D.H. (Korea Electric Power Research Institute) ;
  • Hong S.W. (Dept. of Chemical Engineering, Hanbat National University) ;
  • Park S.H. (Dept. of Chemical Engineering, Hanbat National University) ;
  • Lim H.C. (Korea Electric Power Research Institute)
  • Published : 2006.05.01

Abstract

Anodic overpotential has been investigated with gas composition changes in a $100cm^2$ class molten carbonate fuel cell. The overpotential was measured with steady state polarization, reactant gas addition (RA), inert gas step addition (ISA), and electrochemical impedance spectroscopy (EIS) methods at different anodic inlet gas compositions, i.e., $H_2:CO_2:H_2O=0.69:0.17:0.14\;atm\;and\;H_2:CO_2:H_2O=0.33:0.33:0.33\;atm$, at a fixed $H_2$ flow rate. The results demonstrate that the anodic overpotential decreases with increasing $CO_2\;and\;H_2O$ flow rates, indicating the anode reaction is a gas-phase mass-transfer control process of the reactant species, $H_2,\;CO_2,\;and\;H_2O$. It was also found that the mass-transfer resistance due to the $H_2$ species slightly increases at higher $CO_2\;and\;H_2O$ flow rates. EIS showed reduction of the lower frequency semi-circle with increasing $H_2O\;and\;CO_2$ flow rate without affecting the high frequency semi-circle.

Keywords

References

  1. J. R. Selman and H. C. Maru, in Advances in Molten Salt Chemistry, Vol. 4, G. Mamantov and J. Braunstein, Ed., p.159, Plenum Press, New York (1981)
  2. J. R. Selman, in Fuel Cell Systems, Eds. L. J. M. J. Blomen and M. N. Mugerwa, Plenum Press, NY (1993)
  3. F. Yoshiba, Y. Mugikura, Y. Izaki, and T. Watanabe, in Proceedings of 10th Fuel Cell Symposium, B9, FCDIC, Tokyo (2003)
  4. P. G. P. Ang and A. F. Sammells, J. Electrochem. Soc., 127, 1289 (1980)
  5. C. Y. Yuh and J. R. Selman, J. Electrochem. Soc., 138, 3642 (1991)
  6. H. Morita, Y. Mugikura, Y. lzaki, T. Watanabe, and T. Abe, Denki Kagaku, 65, 740 (1997)
  7. G. Lindbergh, M. Olivry, and M. Sparr, J. Electrochem. Soc., 148, A411 (2001)
  8. C.-G. Lee, B.-S. Kang, H.-K. Seo and H.-C. Lim, J. Electroanal. Chem., 540, 169 (2003) https://doi.org/10.1016/S0022-0728(02)01304-9
  9. C.-G. Lee, H.-C. Lim, and J.-M. Oh, J. Electroanal. Chem., 560, 1 (2003) https://doi.org/10.1016/j.jelechem.2003.06.013
  10. C.-G. Lee, H.-K. Ahn, K.-S. Ahn, and H.-C. Lim, J. Electroanal. Chem., 568, 13 (2004) https://doi.org/10.1016/j.jelechem.2003.11.064
  11. C.-G. Lee and H.-C. Lim, J. Electrochem. Soc., 152, A219 (2005) https://doi.org/10.1149/1.1833318
  12. C.-G. Lee, H. Nakano, T. Nishina, I. Uchida, Y. Izaki, and S. Kuroe, Denki Kagaku, 64, 486 (1996)
  13. H. Morita, H. Nakano, Y. Mugikura, Y. lzaki, T. Watanabe, and I. Uchida, J. Electrochem. Soc., 150, A1693 (2003) https://doi.org/10.1149/1.1624298
  14. E. L. Cussler, Diffusion, mass transfer in fluid systems, 2nd Ed., Cambridge University Press (1997)

Cited by

  1. Influence of temperature on the anode reaction in a molten carbonate fuel cell vol.785, 2017, https://doi.org/10.1016/j.jelechem.2016.12.032
  2. Characteristics of Solid Fuel Oxidation in a Molten Carbonate Fuel Cell vol.7, pp.2, 2016, https://doi.org/10.5229/JECST.2016.7.2.91