DOI QR코드

DOI QR Code

A GENERALIZATION OF A RESULT OF CHOA ON ANALYTIC FUNCTIONS WITH HADAMARD GAPS

  • Stevic Stevo (Mathematical Institute of Serbian Academy of Science)
  • Published : 2006.05.01

Abstract

In this paper we obtain a sufficient and necessary condition for an analytic function f on the unit ball B with Hadamard gaps, that is, for $f(z)\;=\;{\sum}^{\infty}_{k=1}\;P_{nk}(z)$ (the homogeneous polynomial expansion of f) satisfying $n_{k+1}/n_{k}{\ge}{\lambda}>1$ for all $k\;{\in}\;N$, to belong to the weighted Bergman space $$A^p_{\alpha}(B)\;=\;\{f{\mid}{\int}_{B}{\mid}f(z){\mid}^{p}(1-{\mid}z{\mid}^2)^{\alpha}dV(z) < {\infty},\;f{\in}H(B)\}$$. We find a growth estimate for the integral mean $$\({\int}_{{\partial}B}{\mid}f(r{\zeta}){\mid}^pd{\sigma}({\zeta})\)^{1/p}$$, and an estimate for the point evaluations in this class of functions. Similar results on the mixed norm space $H_{p,q,{\alpha}$(B) and weighted Bergman space on polydisc $A^p_{^{\to}_{\alpha}}(U^n)$ are also given.

Keywords

References

  1. F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. 276 (1989), 1-57
  2. G. Benke and D. C. Chang, A note on weighted Bergman spaces and the Cesaro operator, Nagoya Math. J. 159 (2000), 25-43 https://doi.org/10.1017/S0027763000007406
  3. J. S. Choa, Some properties of analytic functions on the unit ball with Hadamard gaps, Complex Variables Theory Appl. 29 (1996), no. 3, 277-285 https://doi.org/10.1080/17476939608814895
  4. P. Duren, Theory of $H^p$ spaces, Pure and Applied Mathematics Vol. 38, Academic Press, New York, 1970
  5. J. H. Mathews, Coefficients of uniformly normal-Bloch functions, Yokohama Math. J. 21 (1973), 29-31
  6. J. Miao, A property of analytic functions with Hadamard gaps, Bull. Austral. Math. Soc. 45 (1992), no. 1, 105-112 https://doi.org/10.1017/S0004972700037059
  7. W. Rudin, Function theory in the unit ball of $C^n$, Grundlehren der Mathematis- chen Wissenschaften, 241, Springer-Verlag, New York-Berlin, 1980
  8. J. -H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of $C^n$, Trans. Amer. Math. Soc. 328 (1991), no. 2, 619-637 https://doi.org/10.2307/2001797
  9. A. Siskakis, Weighted integrals of analytic functions, Acta Sci. Math. 66 (2000), 651-664
  10. S. Stevic, On an area inequality and weighted integrals of analytic functions, Result Math. 41 (2002), no. 3-4, 386-393 https://doi.org/10.1007/BF03322780
  11. S. Stevic, Weighted integrals and conjugate functions in the unit disk, Acta Sci. Math. 69 (2003), no. 1-2, 109-119
  12. S. Stevic, Weighted integrals of holomorphic functions on the polydisc, Z. Anal. Anwendungen 23 (2004), no. 3, 577-587
  13. S. Yamashita, Gap series and $\alpha$-Bloch functions, Yokohama Math. J. 28 (1980), no. 1-2, 31{36
  14. A. Zygmund, Trigonometric series, Cambridge University Press, London, 1959

Cited by

  1. On new Bloch-type spaces vol.215, pp.2, 2009, https://doi.org/10.1016/j.amc.2009.06.009
  2. Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball vol.212, pp.2, 2009, https://doi.org/10.1016/j.amc.2009.02.057
  3. 𝒩p-type functions with Hadamard gaps in the unit ball vol.61, pp.6, 2016, https://doi.org/10.1080/17476933.2015.1119819
  4. Lacunary Series in Weighted HyperholomorphicBp,q(G) Spaces vol.32, pp.1, 2010, https://doi.org/10.1080/01630563.2010.526409
  5. Weighted-Hardy functions with Hadamard gaps on the unit ball vol.212, pp.1, 2009, https://doi.org/10.1016/j.amc.2009.02.019
  6. On Bloch-Type Functions with Hadamard Gaps vol.2007, 2007, https://doi.org/10.1155/2007/39176
  7. Some Sufficient Conditions for Analytic Functions to Belong to Space vol.2008, 2008, https://doi.org/10.1155/2008/404636
  8. Bloch-type functions with Hadamard gaps vol.208, pp.2, 2009, https://doi.org/10.1016/j.amc.2008.12.010
  9. A Theorem of Nehari Type on Weighted Bergman Spaces of the Unit Ball vol.2008, 2008, https://doi.org/10.1155/2008/538573
  10. Lacunary series in quaternion Bp,qspaces vol.54, pp.7, 2009, https://doi.org/10.1080/17476930902999116
  11. Integral-type operators between α-Bloch spaces and Besov spaces on the unit ball vol.216, pp.12, 2010, https://doi.org/10.1016/j.amc.2010.04.074
  12. Sharp inclusions and lacunary series in mixed-norm spaces on the polydisc vol.58, pp.2, 2013, https://doi.org/10.1080/17476933.2011.561839