Improved Performance of Microstrip Antenna using the Compact Photonic Band-gap Structures

소형 포토닉 밴드갭 구조를 이용한 마이크로스트립 안테나의 성능 향상

  • Kim Young-Do (Department of Electronics Engineering, Kyonggi Univ.) ;
  • Lee Hong-Min (Department of Electronics Engineering, Kyonggi Univ.)
  • 김영두 (경기대학교 전자공학과) ;
  • 이홍민 (경기대학교 전자공학과)
  • Published : 2006.05.01

Abstract

In this paper, we propose a new Mushroom-like PBG concepts for designing with forbidden frequency band-gap at low frequency. These design rules are based on enhancing the capacitance per unit area using modified top-patch of mushroom PBG with no increase on the overall thickness of the substrate board. Also, in this paper, a new approach to suppress the surface wave from antenna is proposed by embedding compact mushroom PBG in the substrate. Comparisons between the results from a conventional patch antenna to a patch antenna on a PBG substrate show that the reduction in the surface wave level is remarkable. This can be observed in the radiation pattern and the maximum gain. The maximum gain for reference patch antenna is $6.43dB{\imath}$ at 5.37 GHz, while the maximum gain for the patch antenna with normal mushroom and vane mushroom PBG is $7.24dB{\imath}\;and\;7.53dB{\imath}$at 5.14 GHz. The back radiation is also considerably reduced; this will lead, of course, to an increase in the antenna efficiency.

본 논문에서는 Mushroom 형태 PBG 구조의 소형화 특성 개선을 위한 새로운 주기 구조를 제안하였다. 이러한 기술적 방법은 기존 유전체 기판의 두께와 전체적인 상부 패치의 크기 증가 없이 단위 주기 구조의 등가 커패시턴스 증가를 위한 구조 변형에 기반을 두고 있다. 또한 소형화된 PBG 구조의 부설에 의해 안테나의 표면파 억제를 위한 새로운 구조를 제안하였다. 기존 패치 안테나와 소형 Mushroom PBG 구조가 부설된 패치 안테나의 방사 패턴과 이득 비교를 통해서 표면파 억제가 효과적으로 이루어졌음을 확인할 수 있었다. 5.37GHz의 기본 동작 모드에서 Mushroom PBG 구조가 없는 패치 안테나의 이득은 $6.43dB{\imath}$, 기본 Mushroom PBG 구조와 바람개비 Mushroom 구조가 부설된 패치 안테나의 경우 각각 7.24dB{\imath}$$7.53dB{\imath}$의 이득을 나타내었다. 소형 Mushroom PBG 부설에 의해 안테나의 후방 방사 특성이 개선으로 전체적인 안테나의 효율도 증가하였다.

Keywords

References

  1. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, 'Omnidirectional reflection form a one-dimensional photonic crystal,' Opt. Lett., vol. 23, no. 20, pp. 1573-1575, Oct. 15, 1998 https://doi.org/10.1364/OL.23.001573
  2. E. Yablonovitch, 'Photonic crystals', J. Modem Opt., vol. 41, no. 2, pp. 173-194, 1994 https://doi.org/10.1080/09500349414550261
  3. M. P. Kesler et al., 'Antenna design with the use of photonic bandgap materials as all-dielectric planar reflectors,' Micorwave and Optical Technology Letters., vol. 11, no. 4, pp. 169-174, Mar. 20, 1996 https://doi.org/10.1002/(SICI)1098-2760(199603)11:4<169::AID-MOP1>3.0.CO;2-I
  4. E. Yablonovitch, T. J. Gmitter, and K M. Leung, 'Photonic band gap: the face-centered cubic case employing nonspherical atoms,' Phys. Rev. Lett., vol. 67, no. 17, pp. 2295-2298, 1991 https://doi.org/10.1103/PhysRevLett.67.2295
  5. D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, '3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,' Phys. Rev. Lett., vol. 80, no. 13, pp. 2829-2832, Mar. 1998 https://doi.org/10.1103/PhysRevLett.80.2829
  6. M. Kahrizi, T. K. Sarkar, and Z. A. Maricevie, 'Dynamic analysis of a microstrip line over a perforated ground plane,' IEEE Trans. Microwave Theory Tech., vol. 42, pp. 820-825, May, 1994 https://doi.org/10.1109/22.293530
  7. Quan Xue, Kam Man Shum, Chi Hou Chan, 'Novel 1-D Microstrip PBG Cells,' IEEE Microwave and Guided Letters., vol. 10, no. 10, pp. 403 -405, Oct. 2000 https://doi.org/10.1109/75.877226
  8. Dunbao Yan, Chao Wang, Qiang Gao, and Naichang Yuan., 'A Novel Compact Interembedded AMC Structure for Integrated Circuits and Antenna Arrays', Micorwave and Optical Technology Letters., vol. 45, no. 4, pp. 303-305, May. 20, 2005 https://doi.org/10.1002/mop.20803
  9. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch., 'High-impedance electomagnetic surfaces with a forbidden frequency band,' IEEE Trans. Microwave Theory Technology., vol. 47, no. 11, pp. 2059-2074, Nov. 1999 https://doi.org/10.1109/22.798001
  10. Fei-Ran Yang, Kuang-Ping Ma, Yongxi Qian, Tatsuo Itoh., 'A Uniplanar Compact Photonic-Bandgap(UC-PBG) Structure and Its Application for Microwave Circuits,' IEEE Trans. Microwave Theory Technology., vol. 47, no. 8, pp. 1509-1514, Aug. 1999 https://doi.org/10.1109/22.780402
  11. Li Yang, Mingyan Fan, Fanglu Chen, Jingzhao She, Zhenghe Feng., 'A Novel Compact Electromagnetic-Bandgap(EBG) Structure and Its Application for Microwave Circuits,' IEEE Trans. Microwave Theory Technology., vol. 53, no. 1, pp. 183-190, Jan. 2005 https://doi.org/10.1109/TMTT.2004.839322
  12. Nemai. C. Karmakar, Mohammad. N. Mollah., 'Investigations into nonuniform photonic-bandgap microstrip low-pass filters,' IEEE Trans. Microwave Theory Technology., vol. 51, no. 2, pp. 564-572, Feb. 2003 https://doi.org/10.1109/TMTT.2002.807817
  13. I. J. Bahl and P. Bhartia, Microwave solid state circuit design, John Wiley & Sons, Inc. New York, 1988
  14. D. Sievenpiper, 'High-impedance electromagnetic surfaces,' Ph. D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999