Osteogenic Differentiation of Bone Marrow Stem Cells Using Thermo-Sensitive Hydrogels

온도감응성 수화젤을 이용한 골수간엽줄기세포의 골분화 유도

  • Kim, Sun-Kyung (BK21 Polymer BIN Fusion Team, Chonbuk National University) ;
  • Hyun, Hoon (BK21 Polymer BIN Fusion Team, Chonbuk National University) ;
  • Kim, Soon-Hee (BK21 Polymer BIN Fusion Team, Chonbuk National University) ;
  • Yoon, Sun-Jung (BK21 Polymer BIN Fusion Team, Chonbuk National University) ;
  • Kim, Moon-Suk (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Rhee, John-M. (BK21 Polymer BIN Fusion Team, Chonbuk National University) ;
  • Khang, Gil-Son (BK21 Polymer BIN Fusion Team, Chonbuk National University) ;
  • Lee, Hai-Bang (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology)
  • 김선경 (전북대학교 BK21 고분자 BIN 융합연구팀) ;
  • 현훈 (전북대학교 BK21 고분자 BIN 융합연구팀) ;
  • 김순희 (전북대학교 BK21 고분자 BIN 융합연구팀) ;
  • 윤선중 (전북대학교 BK21 고분자 BIN 융합연구팀) ;
  • 김문석 (한국화학연구원 나노생체재료연구팀) ;
  • 이종문 (전북대학교 BK21 고분자 BIN 융합연구팀) ;
  • 강길선 (전북대학교 BK21 고분자 BIN 융합연구팀) ;
  • 이해방 (한국화학연구원 나노생체재료연구팀)
  • Published : 2006.05.01

Abstract

Poly (ethylene glycol)-based diblock and triblock thermo- sensitive polyester copolymers were investigated for application on tissue engineering and injectable biomaterials in drug delivery system due to their nontoxicity, biocompatibility and biodegradability. We synthesized the diblock copolymers consisting of methoxy poly (ethylene glycol) (MPEG) (Mn=750 g/mole) and poly $(\varepsilon-caprolactone)$ (PCL) by ring opening polymerization of $\varepsilon-CL$ with MPEG as an initiator in the presence of HCl $Et_2O$. The effect of diblock copolymers on in vivo osteogenic differentiation of rat bone marrow stromal cells (BMSCS) with and without the presence of osteogenic supplements (dexamethasone) was investigated. Thin sections were cut from paraffin embedded tissues and histological sections were stained by H&E, von Kossa, and immunohistochemical staining for osteocalcin. In conclusion, dexamethasone containing thermo- sensitive hydrogel might be improved osteogenic differentiation of BMSCs. We expect the osteoinduction effect to be excellent when it uses stem cell or other osteogenic materials.

온도감응성 고분자인 폴리 (에틸렌 글리콜)을 기본으로 하는 다이블록 및 트리블록 폴리에스테르 공중합체들은 비독성과 생체적합성 그리고 생분해성 특징 때문에 조직공학 분야 및 주사제형의 약물전달체에서 많은 응용이 이루어지고 있다. 본 연구에서는 다이블록 공중합체를 이용한 솔-젤 전이 현상을 갖는 고분자를 평균분자량 750 g/mole의 메톡시 폴리 (에틸렌 글리콜)과 카프로락톤을 실온에서 HCl $Et_2O$ 존재 하에서 개환중합을 통하여 합성하였다. 이 공중합체를 이용하여 in vivo상에서 골수간엽줄기세포와 골유도물질인 덱사메타손의 존재 여부에 따라 골분화의 가능성을 조사하였다. 조직을 파라핀으로 고정시켜 슬라이드를 제조한 후 hematoxylin & eosin, 본쿠사 및 오스테오칼신 염색을 통하여 골형성 정도를 확인하였다. 결론적으로 덱사메타손이 함유된 젤이 골형성에 도움을 주지만 젤만으로는 강한 골형성을 유도할 수 없으므로 줄기세포나 다른 골형성 유도재료를 사용하면 우수하게 골형성 효과를 가져올 것이라고 판단되었다.

Keywords

References

  1. G. Khang and H. B. Lee, in Methods of Tissue Engineering, A. Atala, and R. Lanza, Editors, Academic Press, p.771 (2001)
  2. G. Khang, I. W. Lee, J. M. Rhee, and H. B. Lee, Polymer Sci. Tech., 12, 239 (2001)
  3. G. Khang, S. J. Lee, C. W. Han, J. M. Rhee, and H. B. Lee, in Advances in Experimental Medicine and Biology, M. Elcin, Editor, Kluwer-Plenum Press, London, Vol. 657, p.235 (2003)
  4. G. Khang, S. J. Lee, I. W. Lee, and H. B. Lee, Polymer Sci Tech., 13, 4 (2002)
  5. G. Khang, M. S. Kim, S. H. Cho, I. W. Lee, J. M Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 1, 9 (2004)
  6. G. Khang, M. S. Kim, and H. B. Lee, Chem. World, 45, 24 (2005)
  7. G. Khang, S. K. Kim, K. D. Hong, W. Y. Jang, M. S. Kim, C. W. Han, I. W. Lee, and H. B. Lee, Tissue Eng. Regen. Med., 1, 136 (2004)
  8. H. S. Kim, J. W. Lee, J. M. Lee, C. W. Han, J. H. Sung, M. Y. Park, G. Khang, and H. B. Lee, J. Korea Soc. Endocrinology, 17, 206 (2002)
  9. G. Khang, E. J. Kim, S. H. Kim, K. S. Park, C. W. Han, Y. S. Yang, M. S. Kim, and H. B. Lee, Tissue Eng. Regen. Med., 2, 20 (2005)
  10. S. J. Lee, D. H. Lee, G. Khang, Y. M. Lee, and H. B. Lee, Macromol. Chem. Symp., 15, 201 (2002)
  11. J. W. Jang, B. Lee, C. W. Han, I. W. Lee, H. B. Lee, and G. Khang, Poiymer(Korea), 27, 226 (2003)
  12. S. J. Lee, I. W. Lee, Y. M. Lee, H. B. Lee, and G. Khang, J. Biomater. Sci, Polym. Ed., 15, 1003 (2004) https://doi.org/10.1163/1568562041526487
  13. J. W. Jang, B. Lee, C. W. Han, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 382 (2004)
  14. J. W. Jang, K. S. Park, S. H. Kim, C. S. Park, M. S. Kim, C. W. Han, J. M. Rhee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 2, 34 (2005)
  15. K. S. Seo, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 211 (2004)
  16. K. S. Seo, S. K. Chon, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 232 (2004)
  17. M. S. Kim, K. S. Seo, G. Khang, S. H. Cho, and H. B. Lee, J. Biomed. Mater. Res., 70A, 154 (2004) https://doi.org/10.1002/jbm.a.30049
  18. K. S. Seo, M. S. Kim, K. J. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 328 (2004)
  19. K. S. Seo, C. S. Park, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 344 (2004)
  20. M. S. Kim, K. S. Seo, S. Y. Jeong, G. Khang, S. H. Cho, and H. B. Lee, Polymer Preprints, 45, 1054 (2004)
  21. M. S. Kim, K. S. Seo, G. Khang, S. H. Cho, and H. B. Lee, J. Polym. Sci.; Part A: Chem. Ed., 42, 5784 (2004) https://doi.org/10.1002/pola.20430
  22. K. S. Seo, M. S. Kim, G. Khang, S. H. Cho, and H. B. Lee, Polymer Preprints, 46, 820 (2005)
  23. M. S. Kim, K. S. Seo, G. Khang, and H. B. Lee, Macromol. Rapid Commun., 26, 643 (2005) https://doi.org/10.1002/marc.200400650
  24. M. S. Kim, H. S. Seong, S. H. Cho, H. B. Lee, K. S. Chae, J. S. Lee, and G. Khang, Bio-Med. Mater. Eng., 15, 229 (2005)
  25. Y. H. Bae, T. Okano, R. Hsu, and S. W. Kim, Makromol. Chem. Rapid Common., 8, 481 (1994)
  26. H. Feil, Y. H. Bae, J. Feijen. and S. W. Kim, Macromolecules, 25, 5440 (1992) https://doi.org/10.1021/ma00046a049
  27. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, and T. Okano, Nature, 372, 240 (1995)
  28. C. S. Brazel and N. A. Peppas, Macromolecules, 28, 8016 (1995) https://doi.org/10.1021/ma00128a007
  29. S. R. Park, B. H. Min, S. H. Park, and H. J. Lee, Tissue Eng. Regen. Med, 2, 77 (2005)
  30. G. H. Chen and A. S. Hoffman, Nature, 373, 49 (1995) https://doi.org/10.1038/373049a0
  31. J. L. Thomas, H. You, and D. Tirrell, J. Am. Chem. Soc., 117, 2949 (1995) https://doi.org/10.1021/ja00115a039
  32. J. Yang, S. Pickard, N. J. Deng, R. J. Barlow, D. Attwood, and C. Booth, Macromolecules, 24, 670 (1994)
  33. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Nature, 388, 860 (1997) https://doi.org/10.1038/42218
  34. R. Bhardwaj and J. Blanchard, J. Pharm. Sci., 85, 915 (1996) https://doi.org/10.1021/js960097g
  35. Y. J. Kim, S. Choi, J. J. Koh, M. Lee, K. S. Ko, and S. W. Kim, Pharm. Res., 18, 548 (2001) https://doi.org/10.1023/A:1011074915438
  36. B. Jeong, Y. H. Bae, and S. W. Kim. J. Biomed Mater. Res., 50, 171 (2000) https://doi.org/10.1002/(SICI)1097-4636(200005)50:2<171::AID-JBM11>3.0.CO;2-F
  37. F. Berglund, Acta Physiol. Scand, 73, 20 (1968)
  38. J. S. Temenoff, E. S. Steinbis, and A. G. Mikos, Orthopaedic Tissue Engineering: Basic Science and Practice, New York, Marcel Dekker, p.77 (2004)
  39. C. G. Bellow and J. N. M. Heersch, Dev. Biol., 140, 132 (1990) https://doi.org/10.1016/0012-1606(90)90060-V
  40. D. Benayahu, A. Fred, D. Zipori, and S. Wientroub, Calcif Tissue Int., 49, 202 (1991) https://doi.org/10.1007/BF02556119