Immunoglobulin Can Be Functionally Regulated by Protein Carboxylmethylation in Fc Region

  • Park Jong-Sun (Department of Genetic Engineering, Faculty of Life Science and Technology, Sungkyunkwan University, Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Cho Jae-Youl (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Kim Sung-Soo (Department of Anatomy, Ajou University School of Medicine) ;
  • Bae Hyun-Jin (Department of Genetic Engineering, Faculty of Life Science and Technology, Sungkyunkwan University) ;
  • Han Jeung-Whan (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University) ;
  • Lee Hyang-Woo (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University) ;
  • Hong Sung-Youl (Department of Genetic Engineering, Faculty of Life Science and Technology, Sungkyunkwan University)
  • Published : 2006.05.01

Abstract

Protein carboxylmethylation methylates the free carboxyl groups in various substrate proteins by protein carboxyl O-methyltransferase (PCMT) and is one of the post-translational modifications. There have been many studies on protein carboxylmethylation. However, the precise functional role in mammalian systems is unclear. In this study, immunoglobulin, a specific form of $\gamma-globulin$, which is a well-known substrate for PCMT, was chosen to investigate the regulatory roles of protein carboxylmethylation in the immune system. It was found that the anti-BSA antibody could be carboxylmethylated via spleen PCMT to a level similar to $\gamma-globulin$. This carboxylmethylation increased the hydrophobicity of the anti-BSA antibody up to 11.4%, and enhanced the antigen-binding activity of this antibody up to 24.6%. In particular, the Fc region showed a higher methyl accepting capacity with 80% of the whole structure level. According to the amino acid sequence alignment, indeed, 7 aspartic acids and 5 glutamic acids, as potential carboxylmethylation sites, were found to be conserved in the Fc portion in the human, mouse and rabbit. The carboxylmethylation of the anti-BSA antibody was reversibly demethylated under a higher pH and long incubation time. Therefore, these results suggest that protein carboxylmethylation may reversibly regulate the antibody-mediated immunological events via the Fc region.

Keywords

References

  1. Alexander, A., Steinmetz, M., Barritault, D., Frangione, B., Franklin, E. C., Hood, L., and Buxbaum, J. N., Gamma Heavy chain disease in man: cDNA sequence supports partial gene deletion model. Proc. Natl. Acad. Sci. U.S.A., 79, 3260-3264 (1982)
  2. Aswad, D. W., Protein carboxyl methylation in eukaryotes. Curr. Opin. Cell. Biol., 1, 1182-1187 (1989) https://doi.org/10.1016/S0955-0674(89)80069-9
  3. Ausubel, F., Brent, R., Kingston, R. E., Moor, D. D., Seidiman J. G., Smith J. A., and Struhl, K., Short Protocol in Molecular Biology, 5th Ed, John Willy & Sons, Inc., New York, NY (2002)
  4. Barten, D. M. and O'Dea, R. F., The function of protein carboxylmethyltransferase in eukaryotic cells. Life Sci., 47, 181-194 (1990) https://doi.org/10.1016/0024-3205(90)90319-M
  5. Bradford M. E., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  6. Cho, J. Y., Kim, S. S., Kwon, M. H., Kim, S. H., Lee, H. W., and Hong, S., Protein carboxylmethylation in porcine spleen is mainly mediated by class I protein carboxyl O-methyltransferase. Arch. Pharm. Res., 27, 206-216 (2004) https://doi.org/10.1007/BF02980108
  7. Cho, J. Y., Fox, D. A., Horejsi, V, Sagawa, K., Skubitz, K. M., Katz, D. R., and Chain, B., The functional interactions between CD98, beta1-integrins, and CD147 in the induction of U937 homotypic aggregation. Blood, 98, 374-382 (2001) https://doi.org/10.1182/blood.V98.2.374
  8. Clarke, S., Aging as war between chemical and biochemical processes: Protein methylation and the recognition of age damaged proteins for repair. Ageing Res. Rev., 2, 263-285 (2003) https://doi.org/10.1016/S1568-1637(03)00011-4
  9. Clarke, S., Protein carboxyl methyltransferase: Two distinct classes of enzymes. Ann. Rev. Biochem., 54, 479-506 (1985) https://doi.org/10.1146/annurev.bi.54.070185.002403
  10. Clarke, S., Vogel, R. J., Deschenes, R. J., and Stock, J., Posttranslational modification of the Ha-ras oncogene protein : Evidence for a third class of protein carboxyl methyltransferases. Proc. Natl. Acad. Sci. U.S.A., 85, 4643-4647 (1988)
  11. Diliberto, E. J. and Axelrod, J., Regional and subcellular distribution of protein carboxymethylase in brain and other tissues. J. Neurochem., 26, 1159-1165 (1976) https://doi.org/10.1111/j.1471-4159.1976.tb07001.x
  12. Diliberto, E. J., Jr., Viveros, O. H., and Axelrod, J., Subcellular distribution of protein carboxymethylase and its endogenous substrates in the adrenal medulla : Possible role in exitationsecretion coupling. Proc. Natl. Acad. Sci. U.S.A., 73, 4050- 4054 (1976)
  13. Doyle, H. A., Gee, R. J., and Mamula, M. J., A failure to repair self-proteins leads to T cell hyperproliferation and autoantibody production. J. Immunol., 171, 2840-2847 (2003) https://doi.org/10.4049/jimmunol.171.6.2840
  14. Edger, D. H. and Hope, D. B., Protein carboxyl methyltransferase of bovine posterior pituitary gland: neurophysin as a potential endogenous substrate. J. Neurochem., 27, 949-955 (1976) https://doi.org/10.1111/j.1471-4159.1976.tb05160.x
  15. Farrar, C. and Clarke, S., Altered levels of S-adenosylmethionine and S adenosylhomocysteine in the brains of Lisoaspartyl (D-aspartyl) O-methyltransferase deficient mice. J. Biol. Chem., 277, 27856-27863 (2002) https://doi.org/10.1074/jbc.M203911200
  16. Goldsby, R. A., Kindt, T. J., Osborne, B. A., and Kuby, J., Immunolgy, 5th Ed., W. H. Freeman and Company, New York, NY (2003)
  17. Hong, S. Y., Lee, H. W., Desi, S., Kim, S., and Paik, W. K., Studies on naturally occurring proteinous inhibitor for transmethylation reactions. Eur. J. Biochem., 156, 79-84 (1986) https://doi.org/10.1111/j.1432-1033.1986.tb09551.x
  18. Hrycyna, C. A., and Clarke, S., Modification of eukaryotic signaling protein by C terminal methylation reactions. Pharmac. Ther., 59, 281-300 (1993) https://doi.org/10.1016/0163-7258(93)90071-K
  19. Ingrosso, D., D'angelo. S., di Carlo, E., Perna, A. F., Zappia, V., and Galletti, P., Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. Eur. J. Biochem., 267, 4397- 4405 (2000) https://doi.org/10.1046/j.1432-1327.2000.01485.x
  20. James, L. C. and Tawfik, D. S., The specificity of cross-reactivity: promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci., 12, 2183-2193 (2003) https://doi.org/10.1110/ps.03172703
  21. Kim, S. and Paik, W. K., Purification and Properties of protein methylase II. J. Biol. Chem. 245, 1806-1813 (1970)
  22. Kim, S., Cho, J. Y., Lee, H. W., and Hong, S., Purification and properties of protein methylase II from porcine spleen. Kor. J. Biochem., 27, 179-184 (1994)
  23. Kloog, Y., Axelrod, J., and Spector, H., Protein carboxyl methylation increases in parallel with differentiation of neuroblastoma. J. Neurochem., 40, 522-529 (1982) https://doi.org/10.1111/j.1471-4159.1983.tb11314.x
  24. Koshland, D. E. Jr., Chemotaxis as a model second-messenger system. Biochemistry, 27, 5829-5834 (1988) https://doi.org/10.1021/bi00416a001
  25. Kowluru, A. and Amin, R., Inhibitors of post-translational modifications of G-proteins as probes to study the pancreatic beta cell function: potential therapeutic implications. Curr. Drug Targets Immune Endocr. Metabol. Disord., 2, 129-139 (2002) https://doi.org/10.2174/1568008023340668
  26. Kowluru, A., Seavey, S. E., Li, G., Sorenson, R. L., Weinhaus, A. J., Nesher, R., Rabaglia, M. E., Vadakekalam, J., and Metz, S. A., Glucose- and GTP-dependent stimulation of the carboxyl methylation of CDC42 in rodent and human pancreatic islets and pure beta cells. Evidence for an essential role of GTP-binding proteins in nutrient induced insulin secretion. J. Clin. Invest., 98, 540-555 (1996) https://doi.org/10.1172/JCI118822
  27. Krebs, E. G., and Beavo, J. A., Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem., 48, 923-959 (1979) https://doi.org/10.1146/annurev.bi.48.070179.004423
  28. Kwon, M., Jung, K., Lee, H. Y., Lee, H. W., and Hong, S., Purification and characterization of protein methylase II inhibitor from procine liver. Korean Biochem. J., 27, 569-575 (1994)
  29. Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680- 683 (1970) https://doi.org/10.1038/227680a0
  30. Law, R. E., Stimmel, J. B., Damore, M. A., Carter, C., Clarke, S., and Wall, R., Lippolysaccharide induced NF-kB activation in mouse 70Z/3 pre-B lymphocytes is inhibited by mevinolin and 5'-methyl thioadenosine: Role of protein isoprenylation and carboxyl methylation reaction. Mol. Cell. Biol., 12, 103- 111 (1992) https://doi.org/10.1128/MCB.12.1.103
  31. Lee, J. and Stock, J., Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J. Biol. Chem., 268, 19192-19195 (1993)
  32. Leonard, E. J., Skeel, A., Chiang, P. K., and Cantoni, G. L., The action of the adenosylhomocysteine hydrolase inhibitory 3- deazaadenosine, on phagocytic function of mouse macrophages and human monocytes. Biochem. Biophys. Res. Commun., 84, 102-109 (1978) https://doi.org/10.1016/0006-291X(78)90269-3
  33. Nagaoka, M. and Akaike, T., Single amino acid substitution in the mouse IgG1 Fc region induces drastic enhancement of the affinity to protein A. Protein Eng., 16, 243-245 (2003) https://doi.org/10.1093/proeng/gzg037
  34. Paik, W. K. and Kim, S., Effect of methyl substitution on protein tertiary structure. J. Theor. Biol., 155, 335-342 (1992) https://doi.org/10.1016/S0022-5193(05)80602-2
  35. Paik, W, K. and Kim S., Reevaluation of enzymology of protein methylation. In Paik, W, K., and Kim S., (Eds.). Protein Methylation, CRC Press, Boca Raton, FL (1990)
  36. Park, S., Lee, H. W., Kim, S., and Paik, W. K., A peptide inhibitor for S-adenosyl L-methionine-dependent transmethylation reactions. Int. J. Biochem., 25, 1157-1164 (1993) https://doi.org/10.1016/0020-711X(93)90594-5
  37. Pike, M. C., Kredich, N. M., and Synderman, R., Requirement of S-adenosyl-L methionine mediated methylation for human monocyte chemotaxis. Proc. Natl. Acad. Sci. U.S.A., 75, 3928-3932 (1978)
  38. Pillai, S. and Baltimore, D., Myristoylation and the posttranslational acquisition of hydrophobicity by the membrane immunoglobulin heavy-chain polypeptide in B lymphocytes. Proc. Natl. Acad. Sci. U.S.A., 84, 7654-7658 (1987)
  39. Portei, R. R., The hydrolysis of rabbit ${\gamma}$-globulin and antibodies with crystalline papain. Handbook of Experimental Immunology, 73, 119-121 (1959)
  40. Presta, L. G., Engineering antibodies for therapy. Curr. Pharm. Biotechnol., 3, 237-256 (2002) https://doi.org/10.2174/1389201023378256
  41. Reid, K. B., Activation and control of the complement system. Essays Biochem., 22, 27-68 (1986)
  42. Renfrow, M. B., Cooper, H. J., Tomana, M., Kulhavy, R., Hiki, Y., Toma, K., Emmett, M. R., Mestecky, J., Marshall, A. G., and Novak, J., Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation fourier transform-ion cyclotron resonance mass spectrometry. J. Biol. Chem., 280, 19136-19145 (2005) https://doi.org/10.1074/jbc.M411368200
  43. Rodriguez, A. B., Barriga, C., and De la Fuente, M., Mechanisms of action involved in the chemoattractant activity of three beta-lactamic antibiotics upon human neutrophils. Biochem. Pharmacol., 41, 931-936 (1991) https://doi.org/10.1016/0006-2952(91)90198-E
  44. Seo, D. W., Kim, Y. K., Cho, E. J., Han, J. W., Lee, H. Y., Hong, S., and Lee, H. W., Oligosaccharide linked acyl carrier protein, a novel transmethylase inhibitor, from porcine liver inhibits cell growth. Arch. Pharm. Res., 25, 463-468 (2002) https://doi.org/10.1007/BF02976603
  45. Vafai, S. B. and Stock, J. B., Protein phosphatase 2A methylation: A link between elevated plasma homocysteine and Alzheimer's Disease. FEBS Lett., 518, 1-4 (2002) https://doi.org/10.1016/S0014-5793(02)02702-3
  46. Veeraragavan, K. and Gagnon, C., Mammalian protein methylesterase. Biochem. J., 260, 11-17 (1989) https://doi.org/10.1042/bj2600011
  47. Winter-Vann, A. M., Kamen, B. A., Bergo, M. O., Young, S. G., Melnyk, S., James S. J., and Casey, P. J., Targeting Ras signaling through inhibition of carboxyl methylation: an unexpected property of methotrexate. Proc. Natl. Acad. Sci. U.S.A., 100, 6529-6534 (2003)
  48. Wright, A. and Morrison, S. L., Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol., 15, 26-32 (1997) https://doi.org/10.1016/S0167-7799(96)10062-7
  49. Xie, H. and Clarke, S., Protein phosphatase 2A is reversibly modified by methyl esterification at its C-terminal leucine residue in bovine brain. J. Biol. Chem., 269, 1981-1984 (1994)
  50. Yamane, H. K., Farnsworth, C. C., Xie, H., Evans, T., Howald, W. N., Gelb, M. H., Glomset, J. A., Clarke, S., and Fung, B. K. K., Membrane binding domain of the small G protein G25K contains an S-(all-trans-geranylgeranyl)cysteine methyl ester at its carboxyl terminus. Proc. Natl. Acad. Sci. U.S.A., 88, 286-290 (1991)
  51. Zolnierowicz, S., Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochem. Pharmacol., 60, 1225-1235 (2000) https://doi.org/10.1016/S0006-2952(00)00424-X