Inhibition of Proliferation and Induction of Apoptosis by EGCG in Human Osteogenic Sarcoma (HOS) Cells

  • Ji Sang-Jin (Department of Biochemistry, College of Dentistry, KyungHee University) ;
  • Han Dong-Hoon (Department of Biomedical Science, KyungHee University) ;
  • Kim Jeong-Hee (Department of Biochemistry, College of Dentistry, KyungHee University)
  • Published : 2006.05.01

Abstract

EGCG [(-)-epigallocatechin-3-gallate], a major component of green tea has been considered as a major antioxidant constituent. In addition to having been considered for cancer treatment as a chemopreventive and chemotherapeutic agent, EGCG has recently been attributed an anti-proliferative effect. We re-examined the latter finding in this study and added specific focus on the ability of EGCG to induce apoptosis in human osteogenic sarcoma (HOS) cells. Antiproliferative action of EGCG $(IC_{50}=35.3{\pm}6.0{\mu}g/mL)$ appeared to be linked to apoptotic cell death based on morphological changes, chromosomal DNA degradation, and an increase in the $sub-G_1$ apoptotic cell population. Treatment of HOS cells with EGCG gradually activated caspase-3, an established inducer of apoptotic cell death.

Keywords

References

  1. Ahmed, S., Rahman, A., Hanain, A., Lalonde, M., Goldberg, V. M., and Haqqi, T. M., Green tea polyphenol epigallocatechin- 3-gallate inhibits the $IL-1{\beta}–induced$ activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic. Biol. Med., 33, 1097-1105 (2002) https://doi.org/10.1016/S0891-5849(02)01004-3
  2. Ahn, W. S., Huh, S. W., Bae, S. M., Lee, I. P., Lee, J. M., Namkoong, S. E., Kim, C. K., and Sin, J. I., A major consitituent of green tea, EGCG, inhibits the growth of a human cervical cell line, CaSki cells, through apoptosis, G1 arrest, and regulation of gene expression. DNA Cell Biol., 22, 217-224 (2003) https://doi.org/10.1089/104454903321655846
  3. Bellosillo, B., Pique, M., Barragan, M., Castano, E., Villamor, N., and Gil, J., Aspirin and salicylate induce apoptosis and activation of caspases in B-cell chromic lymphocytic leukemia cells. Blood, 92, 1406-1414 (1998)
  4. Bertrand, R. and Sane, A. T., Caspase inhibition in camptothecintreated U-937 is coupled with a shift from apoptosis to transient G1 arrest followed by necrotic cell death. Cancer Res., 59, 3565-3569 (1999)
  5. Chen, N. Y., Ma, W. Y., Yang, C. S., and Dong, Z., Inhibitin of arsenite-induced apoptosis and AP-1 activity by epigallocatechin- 3-gallate and theaflavins. J. Environ. Patho. Toxicol. Oncol., 19, 287-295 (2000)
  6. Cutter, H., Wu, L. Y., Kim, C., Morre, K. J., and Morré, D. M., Is the cancer protective effect correlated with growth inhibitions by green tea (-)-epigallocatechin gallate mediated through an antioxidant mechanism?. Cancer Lett. 162, 149-154 (2001) https://doi.org/10.1016/S0304-3835(00)00631-5
  7. Duriez, P. J. and Shah, G. M., Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem. Cell Biol., 75, 337-349 (1997) https://doi.org/10.1139/bcb-75-4-337
  8. Elatter, T. M. and Virji, A. S., Effect of tea polyphenols on growth of oral squamous carcinoma cells in vitro. Anticancer Res., 20, 3459-3465 (2000)
  9. Hahm, J. C., Lee, I. K., Kang, W. K., Kim, S. U., and Ahn, Y. J., Cytotoxicity of neolignans identified in Saururus chinensis towards human cancer cell lines. Planta. Med., 71, 464-469 (2005) https://doi.org/10.1055/s-2005-864143
  10. Hermaez, J. F., Xu, M., and Dashwood, R. H., Antimutagenic activity of tea towards 2-hydroxamino-3-methylimidazo[4,5- f]quinoline: effect of tea concentration and brew time on electrophile scavenging. Mut. Res., 402, 299-306 (1998) https://doi.org/10.1016/S0027-5107(97)00309-6
  11. Hernaez, J. F., Xu, M., and Dashwood, R. H., Antimutagenic activity of tea towards 2-hydroxyamino-3-methylimidazo[4,5- f] quiolone:effect of tea concentration and brew time on electrophile scarvenging. Mut. Res., 402, 299-306 (1998) https://doi.org/10.1016/S0027-5107(97)00309-6
  12. Hour, T. C., Liang, Y. C., Chu, I. S., and Lin, J. K., Inhibition of eleven mutagens by various tea extracts, (-)epigallocatechin- 3-gallate, gallic acid and caffeine. Food. Chem. Toxicol., 37, 569-579 (1999) https://doi.org/10.1016/S0278-6915(99)00031-9
  13. Huh, S. W., Bae, S. M., Kim, Y. W., Lee, J. M., Namkoong, S. E., Lee, I. P., Kim, S. Hee., Kim, C, K., and Ahn, W. S., Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carinoma cell lines. Gynecol. Oncol., 94, 760-768 (2004) https://doi.org/10.1016/j.ygyno.2004.05.031
  14. Hyun, S. J., Yoon, M. Y., Kim, T. H., and Kim, J. H., Enhancement of mitogen-stimulated proliferation of low dose radiationadapted mouse splenocytes. Anticancer Res., 17, 225 29 (1997)
  15. Jung, Y. D., Kim, M. S., Shin, B. A., Chay, K. O., Ahn, B. W., Liu, W., Bucana, C. D., Gallick, G. E., and Ellis, L. M., EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br. J. Cancer, 84, 844-850 (2001) https://doi.org/10.1054/bjoc.2000.1691
  16. Kim, J. H., Ju, E. M., Lee, D. K., and Hwang, H. J., Induction of apoptosis by mormodin I in promyelocytic leukemia (HL-60) cells. Anticancer Res., 22, 1885-1890 (2002)
  17. Klaus, S. O., Davide, F., Marek, L., Sebastian, W., and Marcus, E. P., Apoptosis signaling by death receptors. Eur. J. Biochem., 254, 439-459 (1998) https://doi.org/10.1046/j.1432-1327.1998.2540439.x
  18. Lee, S. J., Ko, W. G., Kim, J. H., Sung, G. H., Lee, S. J., Moon, C. K., and Lee, B. H., Induction of apoptosis by a novel intestinal metabolite of Ginseng saponin via cytochrome cmediated activation of caspase-3 protease. Biochem. Pharm., 60, 667-685 (2000)
  19. Li, X. and Darzynkiewicz, Z., Cleavage of poly(ADP-ribose) polymerase measured in situ in individual cells: relationship to DNA fragmentation and cell cycle position during apoptosis. Exp. Cell Res. 255, 125-132 (2000) https://doi.org/10.1006/excr.1999.4796
  20. Lilenbaum, R. C. and Green, M. R., Novel chemotherapeutic agents in the treatment of non-small-cell lung cancer. J. Clin. Oncol. 11, 1391-1402 (1993) https://doi.org/10.1200/JCO.1993.11.7.1391
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. T., Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951)
  22. Makimura, M., Hirasawa, M., Kobayashi, K., Indo, J., Sakanaka, S., Taguchi, T., and Otake, S., Inhibitory effect of tea catechins on collagenase activity. J. Periocontol., 64, 630- 636 (1993) https://doi.org/10.1902/jop.1993.64.7.630
  23. Mimoto, J., Kiura, K., Matsuo. K., Yoshino, T., Takata, I., Ueoka, H., Kataoka, M., and Harada, M., (-)-Epigallocatechin gallate can prevent cisplatin-induced lung tumorigenesis in A/J mice. Carcinogenesis, 21, 915-919 (2000) https://doi.org/10.1093/carcin/21.5.915
  24. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., Boyd, M., Feasibility of a high-flux anticancer drug screening using a diverse panel of human tumor cell lines. J. Natl. Cancer Inst., 83, 757-766 (1991) https://doi.org/10.1093/jnci/83.11.757
  25. Naasani, I., Oh-hashi, F., Oh-hara, T., Feng, W. Y., Johnston, J., Chan, K., and Tsuruo, T., Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer Res., 63, 824-830 (2003)
  26. Nigata, S., Apoptotic DNA fragmentation. Exp. Cell Res. 256, 12-18 (2000) https://doi.org/10.1006/excr.2000.4834
  27. Paschka, A. G., Butler, R., and Young, C. Y. F., Induction of apoptosis in prostate cancer cell lines by the green tea component, (-)-epigallocatechin-3-gallate. Cancer. Lett., 130, 1-7 (1998) https://doi.org/10.1016/S0304-3835(98)00084-6
  28. Pezzuto, J. M., Plant-derived anticancer agents. Biochem. Pharm., 53, 121-133 (1997) https://doi.org/10.1016/S0006-2952(96)00654-5
  29. Roomi, M. W., Ivanov, V., Kalinovsky, T., Niedzwiecki, A., and Rath, M., Antitumor effect of nutrient synergy on human osteosarcoma cells U-2OS, MNNG-HOS and Ewing's sarcoma SK-ES.1. Oncol. Rep., 13, 253-257 (2005)
  30. Saffari, Y. and Sadrzadeh, S. M. H., Green tea metabolic EGCG protects membranes against oxidative damage in vitro. Life Sciences, 74, 1513-1518 (2004) https://doi.org/10.1016/j.lfs.2003.08.019
  31. Sanaha, H. S., Kelloff, G. J., Steele, V., Rao, C. V., and Reddy, B. S., Modulation of apoptosis by sulindac, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylhexyl isothiocyanate: apoptotic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Res., 57, 1301- 1305 (1997)
  32. Shi, X., Leonard, S. S., Ding, M., Vallyathan, V., Castranova, V., Rojanasaki, Y., Dong, Z., Antioxidant properties of (-)- epigallocatechin-3-gallate and its inhibition of Cr(VI)-induced DNA damage and Er(IV)0 or TPA-stimulated NF-kappaB activation. Mol. Cell. Biochem. 206, 125-132 (2000) https://doi.org/10.1023/A:1007012403691
  33. Suganuma, M., Okabe, S., Sueoka, N., Sueoka, E., Matsuyama, S., Imai, K., Nakachi, K., and Fujiki, H., Green tea and cancer chemoprevention. Mutat. Res., 428, 339-344 (1999) https://doi.org/10.1016/S1383-5742(99)00059-9
  34. Tobi, S. E., Gilbert, M., Paul, N., and McMillan, T. J., The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVA radiation. Int. J. Cancer., 102, 439-444 (2002) https://doi.org/10.1002/ijc.10730
  35. Yang, C., Wu, J., Zhang, R., Zhang, P., Eckard, J., Yusuf, R., Huang, X., Rossman, T. G., and Frenkel, K., Caffeic acid phenethyl ester (CAFE) prevent transformation of human cells by arsenite (As) and suppresses growth of Astransformed cells. Toxicol., 213, 81-96 (2005) https://doi.org/10.1016/j.tox.2005.05.011
  36. Yang, C. S., Maliakal, P., and Meng, X., Inhibition of carcinogenesis by tea. Annu. Rev. Pharmacol., Toxicol., 42, 25-54 (2002) https://doi.org/10.1146/annurev.pharmtox.42.082101.154309
  37. Yuan, S. S. F., Chang, H. L., Chen, H. W., Kuo, F. D., Liaw, C. C., Su, J. H., and Wu, Y. C., Selective cytotoxicity of squamocin on T24 bladder cancer cells at the S-phase via a Bax-, Bad-, and caspase-3-related pathways. Life Sci., 78, 869-974 (2006) https://doi.org/10.1016/j.lfs.2005.05.068