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Abstract: This paper proposes a modified method of Latin Hypercube sampling to reduce the variance of statistical parameters
in uncertainty analysis of concrete structures. The proposed method is a modification of Latin Hypercube sampling method. This
analysis method uses specifically modified tables of random permutations of ranked numbers. In addition, the Spearman coefficient
is used to make modified tables. Numerical analysis is carried out to predict the uncertainty of axial shortening in prestressed con-
crete bridge. Statistical parameters obtained from modified Latin Hypercube sampling method and conventional Latin Hypercube
sampling method are compared and evaluated by a numeric analysis. The results show that the proposed method results in a
decrease in the variance of statistical parameters. This indicates the method is efficient and effective in the uncertainty analysis of

complex structural system such as prestressed concrete bridges.
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1. Introduction

The terminology of uncertainty analysis or probabilistic analysis
is widely understood to mean the study of probabilistic or
statistical properties of the model output with respect to the
input.l’2 To perform a probabilistic analysis with a numerical
model, it is necessary to obtain model output for various values of
the input variables. Several approaches to the probabilistic analysis
have been developed as numeric analysis tools.” Also, a review of
different methods for uncertainty analysis has been provided by
Novak et al.* Monte Carlo simulation method is a conventional
approach to probabilistic analysis. However, in practice, Monte
Carlo simulations may be limited by constraints, computer
capability and significant expense of computer runs in such
complex structural system as prestressed concrete bridges. A
prestressed concrete bridge is of a complex structural system
because it is constructed in stepwise and its structural behavior is
time-dependent due to the creep and shrinkage of concrete. An
alternative approach is to use a constrained sampling technique.
One such a scheme, which was developed by Iman and co-
workers,”” is Latin Hypercube sampling method. It provides
estimates of several statistical parameters such as mean value,
standard deviation, and coefficient of variation. In addition,
Novak, et al.® and Olsson et al.” have shown the effectiveness of
LHS method in probabilistic problems.

The purpose of this study is to compare the estimates of
statistical parameters obtained from a different number of
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simulations by using modified Latin Hypercube sampling method,
and conventional Latin Hypercube sampling method. In this study, a
modified method of Latin Hypercube sampling is proposed by
which the variance of statistical parameters of outputs can be reduced
more. The paper presents a basic theoretical reasoning sampling
scheme. This method uses specially modified tables of random
permutations of rank numbers, which form the input samples for
a simulation procedure. Finally, numerical analyses are carried out to
show that the proposed modification of Latin Hypercube
sampling method can result in a significant decrease in the
variance of the estimates of commonly used statistical parameters.

2. Latin Hypercube sampling method

Simulation is the process of replicating the real world based on
a set of assumptions and conceived models of reality. It may be
performed theoretically or experimentally. For engineering
application, simulation may be applied to predict or study the
performance and/or response of a system of interest. With a
prescribed set of values for the system parameters (or design
variables), the simulation process yields a specific measure of
performance or response.

A conventional approach to this process is Monte Carlo simulation
technique. However, in practice, Monte Carlo simulations may be
limited by the significant cost of computer runs in complex
structural system problems. An alternative approach is to use a
constrained sampling scheme such as LHS method.””

LHS method consists of two steps to obtain a N x K design
matrix. The first step is dividing each input variable into N
intervals. The second step is the coupling of input variables with
tables of random permutation of rank numbers. Every input
variable X, (k=1, 2, «»+, K) is described by its known cumulative
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function (CDF) F, Xk(x) with the appropriate statistical parameters.
The range of known CDF FXk(x) of each input variable X is
partitioned into N intervals with equal probability of 1/V.

The representative value in each interval is used just once
during the simulation procedure and, thus, there are N
observations for each of the K input variables. They are ordered in
the table of random permutations of rank numbers which have N
rows and K columns. Each row of the table is used on the i~th
computer run. The simulation process is deterministic for a given
set of generated rank numbers. One can evaluate the corres-
ponding value Y, of the output for such a sample. From N
simulations, one can obtain a set of statistical data {Y}= {Y,
Y,, -+, Y,}. This set is statistically assessed so that the
estimations of some statistical parameters, such as the mean value
and the variance of the response, are obtained. Interested readers
are referred to Oh and Yang,' Novak et al.* and Novak et al.® for
more details of this probabilistic method.

3. Modification of Latin Hypercube sampling
method

3.1 Sampling procedure

LHS method can provide sufficient information about the
uncertainties with a relatively small number of sampling. However,
in generating an N x K design matrix, where N is the sample size
and K is the number of variables, LHS may or may not give useful
information about the uncertainty of the input variables because
each value of an input variable is randomly selected from each
interval of equal probability.

The improved statistical method proposed in this study is a
modified LHS method in which the sampling method is more
optimized than the conventional LHS method. This study presents
a basic theoretical background to this improved variance reduction
sampling scheme. This technique uses specially modified tables of
random permutations of rank numbers which form the strategy of
generating input samples for the simulation procedure. The
methodto obtain these specially modified tables is described next.

The modified LHS method consists of two steps to obtain an
Nx K design matrix. The first step is dividing each input variable
into N intervals with equal probability of 1/N. The second step is
the coupling of input variables with’' modified tables of random
permutations of rank numbers. The general expression of the
equation for the analytical model is shown as follows.

Y=1 (0
where, Y= output variable
f( + )=deterministic analytical model
X = the vector of input variables assumed to be random ones
= [xl: X2, "% xk]T

Every input variable x k=1, 2, +=+, K) is described by its known
CDF with the appropriate statistical parameters. The sample {x}, of
input variables, n=1, 2, **-, N (N being the number of sample equal
to the number of simulations) is selected in the following way.

The range of known CDF F Xk(x) of each input variable x; is
partitioned into N disjunct intervals S, Each interval is
characterized by the probability Py, defined as

Po=Px € S) @

and
ZPkn =1 (k: 152,".5K) (3)

In the case of intervals of equal probability, it holds that Py, = 1/N.
Each interval is represented in the sample by the representative
parameter, which is taken from the centroid of the interval. The
representative parameter is obtained as

F;(‘k('”_%o_s) (k=1,2, =K @

where, F ;(1 ( * )=the inverse CDF
k m,;= the rank number of the interval used in
the »-th simulation for input variable x;

The representative parameter is used just once during the
simulation procedure, and so there are N observations for each of
the K input variables. N observations for each of the input variable
x; are associated with a sequence of integers (rank number of
intervals), representing a random permutation of integers 1, 2, ==+,
K. They are ordered in the table of random permutations of rank
numbers which have & rows and K columns. The rank numbers of
intervals used in the n-th simulation are represented by the »-th
row in the table. It means that this table forms the strategy for
obtaining the input samples.

Tables used in LHS are commonly generated randomly. The
possibility does exist that a certain statistical correlation among
columns of the table is randomly introduced, which may have a
significant influence on the results of simulation. Olsson et al’
have introduced the correlation Latin Hypercube sampling plan
which includes the correlation-reduction procedure. The correlation
affects the bias and variance of the estimates obtained. Thus, it is
required that rank permutations are mutually independent. To
diminish the dependency of the input variables, some adjustment
are made to N x K design matrix.

3.2 Approach to non-parametric correlation

There is a restrictive assumption of mutual independency
between input variables. A measure of correlation between two
parameters is the correlation coefficient.

Let the sampling model consist of a sample (Py, O4), ..., (P, O,).

[Py, Py, -+ P and [0y, O, -+, Q) ®)

Tt is supposed that P, <+ <P,. Let R; <+ <R, be the corresponding
ranks of 0y, -+, (J,, then the corresponding rank array is as follows.

[1,2,+n] and [R,, Ry, R,]" (©)

The Spearman rank-order correlation coefficient (the Spearman
coefficient) can be defined as 10

ro= =1 @)

Since the ranks are a rearrangement of the integers from 1 to #,
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the denominator of eq. (7) can be reduced as follows.

i (i~ (n+ 1)2)" = n(n* ~1)/12 (8)
i=1
and
i(i~(n+1)/2)=0 ©)

i=1

Therefore, eq. (7) can be condensed as follows.

6 " 2
= j-—2 i—R. 10
T RO (10)

The Spearman coefficient #, is always between —1 and +1.
When r,= 1, there is a perfect positive correlation between two
variables; in other words, the increase of one variable increases the
other. For r,=—1, the reverse is true. The null hypothesis, that the
correlation coefficient determined for a sample is a random
deviation from the zero correlation in the population, is tested by
means of the Student-# distribution with -2 degrees of freedom."”
The r, to ¢ transformation equation is given as

‘- Irsl["‘i]m (1

-r

Ift=1,_, ., the null hypothesis is rejected with significance
level of a (« is set usually at 0.05). That is, correlations exist
between the variables that were two assumed be independent. The
value of 7, can also be judged on the basis of a #-distribution with
n-2 degrees of freedom. The meaning of the value of r; is the same
as that of the correlation coefficient explained previously. The
assumption that two variables are independent can be tested by
comparing r, with a critical value . *. If » 2 r,*, the assumption is
rejected with significance level of «; in other words, there is
dependency between the two variables.

In generating an N x K design matrix from input variables, the
first columns of the N x K design matrix are random integers
from 1 to N, i.e. the ranks of the first variable. In the next step,
the second column is filled with random integers from 1 to N to
compute ry), the rank correlation coefficient between x; and x;.
If 7, is less than or equal to critical »*, fill the third column
randomly with integers from 1 to N and compute ry3 and ry;.
If both r,;5 and r,»; are less than or equal to critical *, the
next column is filled randomly again with integers from 1 to V.
This procedure is repeated for all columns. After all columns
are filled with integers from 1 to N, replace the integers of the
i-th column by values of the i-th variable according to its
magnitude.

3.3 Matrix formulations for reducing undesired
correlation

Let R be an N x K matrix, of which columns represent K
permutations of integers 1, 2, ..., V. That is, matrix R is identical
to the table of random permutations of rank numbers used in LHS
schemes. Rank correlation among columns of this matrix is
described by the rank correlation matrix T, where element 73, i, j =
1,2,.., K, are the Spearman coefficients among columns i and j of

R. It is obvious that matrix T is symmetrical and is equal to the
unit matrix I for the case of uncorrelated column. Consider the
realizations of R, for which matrix T is positive definite, and let S
be a lower triangular matrix such that

SxTxS8 =I (12)
where
$=Q" (13)

Because matrix T is positive definite, the Cholesky factorization
scheme can be used to find the lower triangular matrix Q.

T=Qx Q' (14)
The following transformation results in an N x K matrix Ry,
Rg=Rx S" (15)

The statistical correlation among columns of this matrix is
described by the rank correlation matrix Tg. Matrix Ty should be
close to I. That is, the difference between appropriate elements in
matrix Ty and matrix I is smaller than the difference between the
elements in matrix T and matrix I. The values in each column of
input matrix R can now be arranged so that they will have the
same ordering as the corresponding column of matrix Rg. As the
result, the rank correlation matrix T equals Ty, and the rank
correlation among columns of R and also among columns of the
table of random permutations of rank numbers is reduced.

The example of Table 1 shows how the rank correlation matrix
T looks and how powerful the presented method can be. The table
for k=5 input variables and »=10 simulation is randomly
generated. Rank correlation among the columns of this table is
described by the rank correlation matrix T as shown in Table 2.

The extreme value of the Spearman coefficient is equal to -0.47.
The procedure described in this section is repeated twice, and
columns of the table are rearranged. This improved the content
of Table 1. The appropriate rank correlation matrix is shown in
Table 2. It is clearly seen that rank correlation among columns of
the table is decreased. The extreme value of the Spearman
coefficient is now equal to -0.07.

Table 1 Random permutation of rank numbers for k = 5 input
variables and n =10 simulations.

] ) Non-modified rank Modified rank
Simulation Variables Variables
(Run)

1| 2] 37 4} 51 1| 2 31 4] S

1 11 3] 4] 1] 5] 1] 3 41 2} 4

2 8| 6|10 2| 4| 8| 6| 10| 1| 2

3 5050 91 31 7] 5] 5 9] 61 5

4 9 4| 1110 3} 9| 4 21 8| 3

5 610 7} 8] 1| 610 51 91 1

6 10 21 2| 6| 6[10] 2 31 31 8

7 20 1) 5] 9)10] 2| 1 7110 6

8 41 71 6] 4| 8| 4| 7 6| 51 9

9 71 8] 8| 7] 9| 7} 8 8| 7] 10

10 31 9] 3} 5| 2 3 9 11 41 7
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Table 2 Rank correlation matrix of random permutationsof rank
numbers from Table 1.

Non-modified table
Variables Variables
1 2 3 4 5
1 1.00 0.03 —0.04 0.31 -0.20
2 0.03 © 1.00 0.37 -0.03 -0.47
3 —0.04 0.37 1.00 -0.41 022
4 0.31 -0.03 -0.41 1.00 0.01
5 —0.20 -047 0.22 0.01 1.00
Modified table
Variables Variables
1 2 3 4 5
1 1.00 0.03 0.02 -0.07 -0.07
2 0.03 1.00 0.01 0.05 —0.04
3 0.02 0.01 1.00 —0.01 —0.04
4 —0.07 0.05 -0.01 1.00 —0.03
5 -0.07 -0.04 —0.04 —0.03 1.00

4. Uncertainty modeling of time-dependent
properties of concrete

Models for time-dependent properties or models for shrinkage
and creep of concrete have been proposed by several researchers.
Bazant and Panula suggest the use of the following equation for
prediction of shrinkage strain, The details of the assumptions and
underlying concepts of the model will not be discussed here in
detail.

En(t, 1) =Y Eyoo by S (4, 1) (16)

where, 4,(¢, 1) = shrinkage strain at any time #; y; =model
uncertainty factor for shrinkage model ; £,.. = ultimate shrinkage
which is expressed by compressive strength of concrete,
aggregate-cement ratio, sand-cement ratio, and water-cement ratio
; k= factor dependent on humidity ; S (z %) = function dependent
on size effect and aging effect ; 7 = observation (current) time (in
days) ; #,= the age of concrete starting to drying (in days).

The total creep function is the instantaneous strain plus both
basic creep and drying creep strains at time 7. Creep function is
expressed by the following equation.

J(t,t) = ‘Pz[El +Cyt, t’J +WC (11, 1) a7
0

where, Cy(t, ') =basic creep coefficient at any time ¢ ; CAt, £,
tp) = drying creep coeflicient ; W,=model uncertainty factor for
basic creep model ; ‘W5 = model uncertainty factor for drying creep
model.

The coefficients ¥, 5, and W5 are model uncertainty factors.
Information on model uncertainty can be found from the work of
Bazant and Panula.”’ Their study found that the coefficients of
variation of shrinkage, basic creep and drying creep properties
were 22% for shrinkage, 27% for basic creep, and 18% for drying
creep, respectively. The reported coefficients of variation of the W
factors are

Ver=022, Vy;=027, and Vy3=0.18 (18)

The coeficients, ‘I’l*, ‘P; and ‘I’; , are prediction error terms that
account for the uncertainty inherent in the theoretical model and
the uncertainty of the micro-mechanism of creep and shrinkage
that is not accounted for. The values in eq. (18) may be written as
follows.

Y =W, ¥, ¥ (i=1,2,3) (19)

where, '¥;= factor due to inadequacy of the prediction formula ;
P 7= factor due to internal uncertainty ; ¥ 5= factor due to measure-
ment errors and uncertainty in the laboratory (or field site) environ-
ment. The factors in eq. (19) are assumed independent, and the
relation among the coefficients of variation is expressed as follows.

A7) =(1+V3) A+Ve )1 +75) (=1,2,3) (20)

The results by Reinhardt et al."” indicate that a value between 0.06
and 0.10 is reasonable for the estimation of qud The coefficient of
variation ¥y, was estimated as 0.05 by Madsen. ' The
following corrected mean values and the coefficient of variation
for model uncertainties V; are obtained from eqs. (18) and (20).

Shrinkage  :E[¥1]=1 and ¥y =020 (21a)
Basiccreep :E[W;]=1 and V"’z =0.26 (21b)
Drying creep : E[¥5]=1 and V% =0.16 (21c)

5. Numerical analysis

5.1 Analytical model

Creep and shrinkage of prestressed concrete structures are very
complex phenomena in which various uncertainties exist with
regard to material variations. Particular attention has been given
to the uncertainty problem of creep and shrinkage.>"” A
probabilistic analysis to predict axial shortening of prestressed
concrete box girders is carried out to investigate the effectiveness
of the proposed method, and the statistical parameters of outputs
are estimated. The span and cross-sectional geometry of girder for
this numerical example are shown in Fig. 1. Axial shortening of
prestressed concrete structure is time-dependent due to creep and
shrinkage of concrete. Random input variables are chosen in
terms of the uncertainty of time-dependent behavior of concrete

1.65m 8x2.9=23.2m 0.3m

FOBEPEPEDD DDENBDREDY
joul [l

(2) Span segment geometry

8x2.9=23.2m ) .65'm

1 13.00m ~
l\ 1 6 A0m j
< 2t

—0.25m

2.50m

__0.25m

2.25m1.25m
!

(b) Typical cross section

Fig. 1 Span and cross-sectional geometry.
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structures. Shrinkage model uncertainty factor (‘¥';), uncertainty
factor for basic creep (‘¥',), uncertainty factor for drying creep
(W5), relative humidity (%), compressive strength of concrete (1),
aggregate-cement ratio (a/ ¢), sand-cement ratio (s / ¢) and water-
cement ratio (w/c) are assumed to be random variables. Each
random variable is represented by its mean value and coefficient
of variation. The statistical properties of input random variables
are shown in Table 3.

52 Comparison of simulation results of modified
LHS method and LHS method

As it has been aforementioned in section 3.3, a decrease of the
variance in the estimates of statistical parameters can be expected
when modified LHS method is used. In this study, the estimates of
mean value Y, standard deviation Sy, coefficient of variation
(COV) V,, skewness ay, minimum value in the sample Fyyy, and
maximum value in the sample Y,y obtained by LHS and
modified LHS are compared.

Estimates are compared for 10, 20 and 30 simulations.
Sampling is repeated 10 sets for each number of simulations. The
tables are randomly generated in every run for the case of LHS
while the tables are rearranged and the statistical correlation of
their columns is diminished for the case of modified LHS.
Intervals have the same probability of 1/N, and representative
parameters are taken at the centroid of intervals.

After performing computer runs of ten sets, ten values of ¥, Sy,
Vy» ay, T and Yyax are obtained. From theses particular
samples, mean value Yz, standard deviation s,, maximum value
MAX, and minimum value MIN, are evaluated, where Z= Y, sy,
V), ay, Yyax and Yygy. The value Yz is the estimate of the
appropriate statistical parameter Z of the basic sets, and the values
s, MAX, and MIN,, characterize the variance of estimate and the
amplitude of its possible values. When the statistics obtained by
both sampling schemes are compared, the variance of estimates
can also be compared.

The axial shortening of prestressed concrete box girder at
10,000 days after construction are presented in Fig. 2 through Fig. 7.
The results obtained by LHS and modified LHS are plotted as a
dashed line and a straight line, respectively, in the figures. Each
figure consists of part (a) and part (b). In each figure, part (a)
presents 3 plots-(1) mean value of an appropriate statistical parame-
ter obtained from 10 sets, (2) minimum value of an appropriate
statistical parameter obtained from 10 sets, and (3) maximum value
of an appropriate statistical parameter obtained from 10 sets. The
number of simulations and the value of appropriate parameter Z are
plotted on the horizontal and vertical axis, respectively. The statistics

Table 3 Statistical properties of input variables.

Variables Mean | C.O.V. |Reference
vy, Uncertainty factor for shrinkage| 1.0 020 12
W, Uncertainty factor for basic creep | 1.0 0.26 12
W3 Uncertainty factor for drying creep| 1.0 0.16 12

h  Relative humidity (%) 61.6 027 |Measured

/. Concrete strength (MPa) 49.2 0.07 |Measured
a/c Aggregate-cement ratio 344 0.1 14
s/c Sand-cement ratio 1.40 0.1 14
w/c Water-cement ratio 0.31 0.1 14
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5
=
2 b
£ 0.08 !
=
k]
< 0.04
0
10 20 30
Number of Simulations
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Fig. 2 Statistics of mean values.

for mean values is shown in Fig. 2. Mean values of modified LHS
are almost the same as those of LHS. However, the difference
between the maximum value and the minimum value determined
by modified LHS is much smaller than the difference determined by
LHS. Also, the standard deviation determined by modified LHS is
much smaller than that determined by LHS

Statistics of standard deviations and statistics of coeflicient of
variation are shown in Figs. 3 and 4, respectively. Statistical
characteristics of Figs. 3 and 4 are similar to those of Fig. 2. Mean
values of modified LHS are almost the same as those of LHS.
However, the difference between the maximum value and the
minimum value determined by modified LHS is much smaller
than the difference determined by LHS. The standard deviation
determined by modified LHS is much smaller than that
determined by LHS.

The statistics for skewness is shown in Fig. 5. Mean values of
modified LHS are almost the same as those of LHS. Moreover,
the difference between the maximum value and the minimum
value determined by modified LHS is not much different from
the difference determined by LHS. In addition, the standard
deviation determined by modified LHS is is almost the same as
the standard deviation determined by LHS.

Statistics of maximum values and minimum values are shown
in Figs. 6 and 7, respectively. These two figures show that the
maximum and minimum values as determined by the two
respective methods used in this study did not differ significantly
from each other. The standard deviation evaluated by modified
LHS is smaller than that evaluated by LHS.

The results of the analysis show that the proposed method
achieved a substantial reduction of the variance in the estimation
of commonly used statistical parameters such as mean, standard
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deviation and coefficient of variation. for the uncertainty analysis of concrete structures. It is a
modification of Latin Hypercube sampling method. The proposed
6. Conclusions method uses specially modified tables in which bias of rank
number is decreased. Spearman rank correlation coefficient is
This paper presents an effective probabilistic analysis method applied to decrease the bias of rank correlation. As an application
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example, a numerical analysis of pre-stressed concrete box girder
is carried out to analyze its axial deformation. The application
study revealed that the difference between the maximum and
minimum values, standard deviation, and coefficient of variation
determined by the proposed method was much smaller than those
determined by conventional LHS method. Thus, it follows that
the proposed method results in a significant reduction of the
variance in the estimates of common statistical parameters.
Finally, the proposed probabilistic analysis method is expected to
be effective in the uncertainty analysis of such structures as
concrete bridges. Future study with regard to the application of
the proposed method will attest for its effectiveness in the field
application even more.
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