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Abstract. Typical confidence intervals for a mean or mean residual life (MRL) are centered
about the mean or mean residual life. We discuss novel confidence intervals that produce
statements like “we are 95% confident that the MRL function, e(t), is greater than a prespecified

M, for all tin the interval [0, é)” where @ is determined from the sample data, confidence level,

and f,. Also, we can have statements like “we are 95% confident that the MRL of population 1,

namely e,(t), is greater than the MRL of population 2, e,(t), for all t in the interval [0, 0 Y’ where

0 is determined from the sample data and confidence level. We illustrate these one and two
sample confidence intervals on internal bonds (tensile strengths) for an important modern
engineered wood product, called medium density fiberboard (MDF), used internationally.
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$:1. INTRODUCTION

Mean remaining (or residual) life (MRL) functions and tables have been studied and
commented on by many individuals over the years. Guess and Proschan (1988), Chiang (1968),
and Deevey (1947), cite the use of the mean residual life for annuities via expected life tables in
ancient Roman culture. More recently, a wide host of papers covers many other aspects of MRL,
for example, Guess, Zhang, Young, and Leon (2005), Zhao and Elsayed (2005). Anis, Basu, and
Mitra (2004), Bradley and Gupta (2003), Asadi and Ebrahimi (2000), Na and Kim, (2000), Lim
and Park (1998), Guess, Nam, and Park (1998), Guess, Walker, and Gallant (1992), Abouammoh
(1988), Oakes and Dasu (1990), Berger, Boos, and Guess (1988), Guess and Park (1988), Guess,
Hollander and Proschan (1984). These citations are a brief list of the many excellent papers
written on MRL. We plan later an extensive survey of MRL works.

Note that for a random lifetime X, the MRL is defined as the conditional expectation E(X-
t| X > t). This can be further represented and simplified using the reliability function R(t) =
P(X>t)=1-F(t) as

e(=E(X—t|X>t)= [?R(x)dx]/ R()
t

where we assume R(t) > 0 for e(t) to be well defined. Also note, the empirical MRL is easily
calculated by substituting the standard empirical reliability function into the formula of e(t) for
R(t). Compare Guess and Proschan (1988). In this paper we will calculate the empirical MRL at
the order statistics, and then linearize it in between the order statistics.

Recall the MRL function can exist, while the failure rate function might not exist, or, vice a
versa, the failure rate function can exist without the MRL function existing. The reliability
function can be represented as a function of the MRL, as

R(t e(((t)))exp[ JL(x)de]

Compare, for example, Guess and Proschan (1988) for additional comments and insights on
MRL. For more information on special classes of distributions connected with MRL that have
been widely studied and tested in a variety of situations see the helpful paper by Hollander and
Proschan (1984), plus the classic book by Barlow and Proschan (1981).

Typical confidence intervals for a mean or mean residual life (MRL) are centered about the
mean or mean residual life. We discuss novel confidence intervals that allow making statements

like “we are 95% confident that the MRL e(t) is greater than a prespecified p, for all t in the

interval [0, é)” where 8 is determined from the sample data, confidence level, and u,,. Also,
we can have statements like “we are 95% confident that the MRL of population 1, namely e;(t),
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is greater than the MRL of population 2, e,(t), for all t in the interval [0, €)” where again & is
determined from the sample data and confidence level. Other types of confidence statements are
also possible.

We illustrate these sample confidence intervals on internal bonds (tensile strengths) of an
important modern engineered wood product, called medium density fiberboard (MDF), used
internationally. See Berger, Boos, and Guess (1988) and Balgopal (1989) for more on these types
of MRL intervals. For more on MDF see Guess, Leén, Chen, and Young, (2004), Guess,
Edwards, Pickrell, and Young (2003), and Young and Guess (2002).

In Section 2, we discuss the helpful two sample case of confidence intervals using mean
residual life functions (MRL). We apply these confidence intervals to real data from tests of
tensile strength of MDF. We emphasize that these intervals can be used even more broadly, not
just for regular life data. The intervals can be used for any time or stress to response data, plus
financial data, etc.

Recall that Weibull’s original reliability function was developed by him studying and fitting
strengths for various materials (see Weibull 1939, 1951). Product “life” for MDF can be
measured in terms of the strength to failure, as opposed to the time to failure. The strength (e.g.,
internal bond) or pounds per square inch (p.s.i.) to failure is a crucial reliability parameter of the
product. It naturally allows the producer to make assurances to customers about the quality,
safety, and useful “life” range of the product. We will write MRL where we understand it is
actually mean remaining pressure (measured in p.s.i.) until failure.

In Section 3 we present the one sample case and applications of it to MDF data. In Section 4
we have concluding comments and recommendations on these confidence intervals and future
work.

2. TWO SAMPLE MEAN RESIDUAL LIFE CONFIDENCE INTERVALS
ON MODERN ENGINEERED WOOD

Compare Young and Guess (2002) for how MDF data is stored and used in a real time
database with regression modeling to predict strength. This provides quick feedback to the
manufacturer in order to minimize process inputs and maximize product quality within specified
limits. One key metric used by manufacturers of the quality or reliability of MDF is internal bond
(IB). Samples from a cross section of the MDF are tested by being pulled apart. The IB at failure
is then measured in pounds per square inch (p.s.i.) or the corresponding metric units (kilograms
per cubic meter).

We use g, () to denote the empirical MRL of an MDF product with density of 46 pounds

per cubic foot (Ibs/ft’), thickness of 0.625 inches, and width of 61 inches. We employ ¢ (1) 10

denote the empirical MRL of an MDF product with density of 48 pounds per cubic foot (Ibs/ft*),
thickness of 0.625 inches, and width of 61 inches. Naturally, the corresponding population
MRL’s are written ¢ 4 6([) ande48(t), respectively. Our sample size for density of 48 is nyg= 108
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units, while the sample size for density of 46 is ng= 975 units. A priori, MDF workers would
conjecture that a higher density of 48 would yield a greater average IB and MRL. This turned out
to be mostly true, but surprisingly was not always the case.

We discuss three figures that provide different insights into the MRL’s, into the
corresponding novel confidence intervals, and into the specific statistical functions that are used
to create these confidence intervals. The empirical MRL is plotted at each unique failure then
linearized between points as seen in the figures. In Figure 2.1 we graph the empirical MRL’s for
both ¢ M) and &) It is natural to conjecture for these products a decreasing empirical MRL.

Recall this suggests the classical DMRL (Decreasing Mean Residual Life) class tested in
Hollander and Proschan (1975), plus other helpful DMRL tests by other authors. Note for density
48 there is graphical evidence of a DMRL, but this is not the case for density 46 (Figure 2.1).

As expected the MRL for ¢ (D) is much higher, starting with a sample mean of é,,(0)=

185.7 p.s.i., corresponding to mean residual pressure to failure in p.s.i. (which again will be
understood when we use the standard abbreviation of MRL). This is higher, as would be
conjectured, than a lower density MRL’s sample mean of é,s(0) = 122.7 p.s.i. Also as

conjectured, ¢ 48([) dominates ¢ : 6(1) for all t > 0 until around t = 150 p.s.i., when they
surprisingly switch roles after a crossing. Also, note that ¢ 16 () has a later peak at 151.4 with the
MRL being é,,(151.4)= 49.3, while the other MRL (which workers expected to be higher) is
actually lower instead with ¢ ” (151.4)= 34.3.

Recall that a priori one would not conjecture this switching. This suggests that for a density
of 46 Ibs/ft’ some units may be produced with unnecessarily high raw material set points, i.e.,
slow production transition from a density of 46 to 48, producing an intermediate type of product
misclassified as having a density of 46 lbs/ft>. The upper turning in the MRL of ¢ 160 is unusual

and may yield higher product costs for the density of 46 Ibs/ft’ product that does not require the
stronger IB. The MRL provides an interesting rubric for product classification and continuous
improvement.

The increase in MRL above 135 p.s.i., for the product with a density of 46 lbs/ft’, was a
surprise. This may show a setup change by the manufacturer to a higher targeted strength product,
i.e., the manufacturer produces a higher strength product with higher resin and wood at a slower
line speed, and is unable to instantaneously meet target specifications during setup change from
the nominal strength to higher strength product.

It is obvious to practitioners from the MRL graph in Figure 2.2 that a hybrid product, or
medium-strength product, is likely being produced. The MRL graph in Figure 2.1 reveals an
opportunity cost for the manufacturer, e.g., improve setup change time to minimize resin usage,
optimize line speed targets during product change, etc. The MRL graph in Figure 2.1 may have,
also, identified a new product opportunity for the manufacturer. These empirical MRL behaviors
can be powerful diagnostic tools to facilitate training, continuous improvement, and ultimately
cost savings.
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Mean Residual Life Functions
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Figure 2.1. Empirical mean residual life functions of expected remaining pressure till failure.
Top graph is the MRL é,5(D) for MDF with density 48, bottom is &0 the empirical MRL for a

density 46. Note é,(0= 185.7 and 8, (0)= 122.7, crossing and later peak foré46(t).

Figure 2.2 has the two empirical MRL functions plus the statistical function Z,,(t) described
in Berger, Boos, and Guess (1988) and the critical threshold z value straight line of z = 2.33 for
determining a 99% confidence band. Note that Z,(t) is essentially a two sample statistic on the
difference between two population means, but here it is for the MRL functions at time t. Also,
note that m and n are the respectively sample sizes m = nyg = 108 and n = nye = 975. The thicker
line is the statistical test function Z,(t). Note Z(t) crosses from above the critical threshold line

of z = 2.33 at the point 6 = 147.98. This implies, “we have 99% confidence that the population
MRL for density 48, e, (1) dominates as statistically significant the population MRL for density

46, e, 6(;), for the entire interval [0, 147.98).” These can be thought of as lower confidence
bounds of the form C = 1-«, with e,s() > e,(0) for all t in [O,é) where the § = inf {t>0:
Zon(t) < z, } where z, is the standard normal upper « quantile, z = 2.33, for the one sided

lower 99% confidence interval. For a 95% we would use z = 1.645, while for 90% confidence
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we would use z = 1.28, etc. See Berger, Boos, and Guess (1988) for more comments and other
types of these novel confidences intervals.

Mean Residual Life Functions and Z Function
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Figure 2.2. Same as Figure 2.1, additional discerning statistical difference test function Z,,(t)
as the darker line. Yields a crossing from above on the critical threshold line z =233at 6 =

inf {t > 0: Z,s(t) <z _ } = 147.98, producing a 99% one sided confidence interval.

Lastly we give insight into the need to adjust a two sample procedure when the
remaining units (i.e., remaining sample sizes) are small (Figure 2.3). Figure 2.3 has all of the
Figure 2.2 functions, and also has the “t” value adjusted for use in a two sample procedure using
the adjusted “t” and adjusted degrees of freedom. We replace the z percentile with the
appropriate adjusted “t” percentile. Recall our initial large sample sizes nyg = 108 and ny = 975.
Typically, MRL is a large sample approach, but we need to stress the need for care in the later
tails of the MRL when the remaining samples might be small. Note that the t values jump above
2.33 or below -2.33 to the “t” heights in Figure 2.3. Also, there is more need to prespecify
particular aspects there. For additional specific details see Berger, Boos, and Guess (1988).
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Mean Residual Life Functions, Z Function, and 1’ Critical Values
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Figure 2.3. Same as Figure 2.2, added another critical z = -2.33 and the adjusted “t” values for
when the remaining sample sizes are small. Note the jump in the “t” values beyond 150.

Obviously other techniques such as TTT plots (see, Klefsjo 1991), box plots, histograms, as
well as MRL plots, are helpful for process improvement and training. We stress the helpfulness
of the graphs, but especially these novel confidence intervals for comparisons that are statistically
valid in the two sample case and, as seen next, the one sample case.

3. SAMPLE MEAN RESIDUAL LIFE CONFIDENCE INTERVALS ON
MODERN ENGINEERED WOOD

We now illustrate the one sample versions of these confidence intervals. For the population
MRL e, of density 48, a one sided 99% confidence interval for e, ()10 be, for example, above

80 p.s.i. would yield 6 = 102.57. This implies we can say with 99% confidence that the
population MRL e,() is larger than 80 p.s.i. for all t in the entire interval [0, 102.57).

For the population MRL ¢ 46 () of density 46, a one sided 99% confidence interval for

e,5(H)to be above 80 p.s.i. would yield instead 0 = 41.97. This implies we can say with 99%
confidence that the population MRL 946(,)is larger than 80 p.s.i. for all t in the entire interval [0,
41.97).
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Note the MRL may help in determining actual minimum safety standards and extra safety
thresholds that are statistically valid. MRL may also lead to economic benefits for the
manufacturer from reduced rework and improved efficiency.

4:4. SUMMARY AND CLOSING REMARKS

We recommend using these novel confidence intervals for both two sample and one sample
settings. They provide additional insights that can be used to quantify aspects suggested by
graphical comparisons, which are also useful. These statistical intervals can be used to explore
the data and find key thresholds. Note how unique, striking behaviors can be identified by
comparative MRL plots and these novel confidence intervals on real word data sets on tensile
strength measured by IB. This may facilitate training, process improvement and cost savings.

The calculations and graphs were done in Maple, version 10. Code from Maple can be
outputted in Matlab and C++. Other languages naturally are also available, for example R or S+.
Copies of our code in Maple are available by emailing Research Associate Professor Timothy M.
Young at tmyoungl@utk.edu. We plan later an extensive survey of MRL works.
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