Membrane Application of Poly(lactic acid)

Poly(lactic acid)의 분리막에의 응용

  • Nam Sang-Yong (Department of Polymer Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Park Ji-Soon (Department of Polymer Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Rhim Ji-Won (Department of Chemical Engineering, Hannam University) ;
  • Dorgan J.R. (Department of Chemical Engineering, Colorado School of Mines)
  • 남상용 (경상대학교 고분자공학과, 공학연구원) ;
  • 박지순 (경상대학교 고분자공학과, 공학연구원) ;
  • 임지원 (한남대학교 화학공학과) ;
  • Published : 2006.06.01

Abstract

Poly(lactic acid) is a linear aliphatic thermoplastic polyester, produced by the ring-opening polymerization of lactides and the lactic acid monomers, which are obtained from the fermentation of sugar feed stocks, corn, etc. PLA has high mechanical, thermal plasticity, fabric-ability, and biocompatibility, So PLA is a promising polymer far various end-use applications. In recent time, the intercalation of polymers from either solution or the melt in the silicate galleries of clay is the best technique to prepare nanocompoiste material which often exhibit remarkable improvement of mechanical, thermal, optical and physicochemical properties when compared with the pure polymer or conventional composites. Layered silicate is naturally abundant, economic, and more importantly benign to the environment.

Poly(lactic acid) (PLA)는 옥수수나 설탕수와 같은 재생자원에서 추출된 환경친화적 재료로서 이에 대한 관심이 증대되고 있다. PLA는 선형 지방족 열가소성 polyester로써, lactide와 lactic acid 모노머의 고리 개환 중합법에 의해 제조된다. PLA는 높은 기계적 능력과 열가소성, 직물능력과 생체적합성을 가지고 있어서, 다양한 end-use application에 유망한 고분자이다. 그러나 열점도, 충격인자, 열변형온도(HDT), gas barrier 특성 등과 같은 다른 몇몇 특성들은 충분히 만족시키지 못한다. 최근에, clay의 실리케이트 층에 용액이나 용융법을 이용한 고분자의 삽입은 순수 고분자나 전형적인 복합체에 비해 기계적, 열적, 광학적, 그리고 물리화학적 특성에서 훌륭한 증진을 꾀할 수 있는 나노복합재료를 제조하기 위한 가장 좋은 기술이다. 층상실리케이트는 자연적으로 풍부하고, 경제적이며, 환경친화적 물질이다. 본 논문에서는 생분해성 고분자를 기초로 한 재생자원 poly(lactic acid)의 여러 합성과 특징, 그리고 그것의 층상실리케이트 나노복합체 분리막으로의 응용과 특징을 알아보고자 하였다.

Keywords

References

  1. V. A. Fomin and V. V. Guzeev, 'Biodegradable polymers, their present state and future prospects', Rubb Plastics Tech., 17, 186-204 (2001)
  2. A. K. Mohanty, T. T. Drzal, and M. Misra, 'Nano-reinforcement of bio-based polymers-the hope and reality', Polym Mater. Sci. Eng., 88, 60 (2003)
  3. S. F. Wang, L. Shen, Y. J. Tong, L. Chen, I. Y. Phang, P. Q. Lim, and T. X. Liu, 'Biopolymer chitosan/montmoriilonite nanocomposites: Preparation and characterization', Polymer Degradation and Stability (2005)
  4. S. S. Ray, K. Yamada, M. Okamoto, and K. Ueda, 'New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology', Polymer., 44, 857-886 (2003) https://doi.org/10.1016/S0032-3861(02)00818-2
  5. S. S. Ray, K. Yamada, M. Okamoto, Y. Fujimoto, A. Ogami, and K. Ueda, 'New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties', Polymer., 44, 6633-6646 (2003) https://doi.org/10.1016/j.polymer.2003.08.021
  6. Y. X. Xu, K. M. Kim, M. A. Hanna, and D. Nag, 'Chitosan-starch composite film: preparation and characterization', Industrial Crops and Products, 21, 185-192 (2005) https://doi.org/10.1016/j.indcrop.2004.03.002
  7. C. M. Koo, M. J. Kim, M. H. Choi, S. O. Kim, and I. J. Chung, 'The effect of molecular weight of PP-g-MA/Layered silicate the nanocomposites', Hwahak Konghak., 39, 635 (2001)
  8. C. M. Koo, M. J Kim, M. H. Choi, S. O. Kim, and I. J. Chung, 'Study on the preparation and the properties of PP-g-MA/Layered silicate nanocomposites', Hwahak Konghak., 38, 691 (2001)
  9. N. Ogata, G. Jimenez, H. Kawai, and T. Ogihara, 'Structure and thermal/mechanical properties of poly(L-lactide)-clay blend', J. Polym. Sci. Part B:Polym Phys., 35, 389-96 (1997) https://doi.org/10.1002/(SICI)1099-0488(19970130)35:2<389::AID-POLB14>3.0.CO;2-E
  10. S. S. Ray, K. Okamoto, K. Yamada, and M. Okamoto, 'Novel porous ceramic material via burning polylactide/layered silicate nanocomposite Nano Lett., 2, 423 (2002) https://doi.org/10.1021/nl020284g
  11. S. S. Ray, K. Yamada, M. Okamoto, and K. Ueda, 'New polylactide/layered silicate nanocomposite: a novel biodegradable material', Nano Lett., 2, 1093-6 (2002) https://doi.org/10.1021/nl0202152
  12. S. S. Ray, P. Maiti, M. Okamoto, K. Yamada, and K. Ueda, 'New polylactide/layered silicate nanocomposites. 1. Preparation, characterization and properties', Macromolecule, 35, 3104 (2002) https://doi.org/10.1021/ma011613e
  13. P. Maiti, K. Yamada, M. Okamoto, K. Ueda, and K. Lkamoto, 'New polylactide/layered silicate nanocomposite: role of organoclay', Chem. Mater., 14, 4654 (2002)
  14. M. A. Paul, M. Alexandre, P. Degee, C. Henrist, A. Rulmont, and P. Dubois, 'New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study', Polymer, 44, 443 (2003) https://doi.org/10.1016/S0032-3861(02)00778-4
  15. S. S. Ray, K. Yamada, M. Okamoto, A. Ogami, K. Ueda, 'New polylactide/layered silicate nanocomposites. 3. High performance biodgradable materials', Chem. Mater., 15, 1456 (2003) https://doi.org/10.1021/cm020953r
  16. J. H. Chang, Y. U. An, D. Cho, and E. P. Giannelis, 'Polylactide nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II)', Polymer, 44, 3715 (2003) https://doi.org/10.1016/S0032-3861(03)00276-3
  17. S. S. Ray and M. Okamoto, 'Biodegradable polylactide/layered silicate nanocomposite: open a new dimension for plastics and composites', Macromol Rapid Commun, 24, 815 (2003) https://doi.org/10.1002/marc.200300008
  18. S. S. Ray and M. Okamoto, 'New polylactide/layered silicate nanocomposites: 6. Melt rheology and foam processing', Macromol. Mater. Eng., 288, 936 (2003) https://doi.org/10.1002/mame.200300156
  19. J. H. Chang, Y. Uk-An, and G. S. Sur, 'Poly(lactic acid) nanocomposites with various organoclays. I. thermomechanical properties, morphology, and gas permeability', J. Polym. Sci. Part B: Polym. Phys., 41, 94-103 (2003) https://doi.org/10.1002/polb.10349
  20. V. Krikorian and D. Pochan, 'Poly(L-lactide acid)/layered silicate nanocomposite: fabrication, characterization, and properties', Chem. Mater., 15, 4317 (2003) https://doi.org/10.1021/cm034369+
  21. Y. Di, S. Iannace, E. D. Maio, and L. Nicolais, 'Poly(lactic acid)/organocaly nanocomposites: thermal, rheological properties and foam processing', J. Polym. Sci. Part B: Polym. Phys., 43, 689 (2005) https://doi.org/10.1002/polb.20366
  22. P. Maiti, C. A. Batt, and E. P. Giannelis, 'Renewable plastics: synthesis and properties of PHB nanocomposites', Polym Mater. Sci. Eng., 88, 58 (2003)
  23. G. X. Chen, G. J. Hao, T. Y. Guo, M. D. Song, and B. H. Zhang, 'Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocomposites', J. Appl. Polym. Sci., 93, 655 (2004) https://doi.org/10.1002/app.20512
  24. H. M. Park, X. Li, C. Z. Jin, C. Y. Park, W. J. Cho, and C. K. Ha, 'Preparation and properties of biodegradable thermoplastic starch/clay hybrids', Macromol. Mater. Eng., 287, 553-8 (2002) https://doi.org/10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3
  25. A. P. Marques, R. L. Reis, and J. A. Hunt, 'The biocompatibility oc novel starch-based polymers and composites: in vitro studies', Biomaterials, 23, 1471 (2002) https://doi.org/10.1016/S0142-9612(01)00272-1
  26. H. M. Park, W. K. Lee, C. Y. Park, W. J. Cho, and C. S. Ha, 'Environmental friendly polymer hybrids: part 1. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites', J. Mater. Sci., 38, 909 (2003) https://doi.org/10.1023/A:1022308705231
  27. H. Uyama, M. Kuwabara, T. Tsufimoto, M. Nakano, A. Usuki, and S. Kobayashi, 'Green nanocomposites from renewable resources: plant oil-clay hybrid materials', Chem. Mater., 15, 2492 (2003) https://doi.org/10.1021/cm0340227
  28. H. Miyagawa, M. Misra, L. T. Drazal, and A. K. Mohanty, 'Novel biobased nanocomposites from functionalized vegetable iol and organically-modified layered silicate clay', Polymer, 46, 445 (2005) https://doi.org/10.1016/j.polymer.2004.11.031
  29. H. M. Park, X. Liang, A. K. Mohanty, M. Misra, and L. T. Drazal, 'Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites', Macromolecules, 37, 9076 (2004) https://doi.org/10.1021/ma048958s
  30. J. P. Zheng, P. Li, Y. L. Ma, and K. D. Yao, 'Gelatine/montmorillonite ybrid nanocomposite. I. Preparation and properties', J. Appl. Polym. Sci., 86, 1189 (2002) https://doi.org/10.1002/app.11062
  31. J. S. Park, J. W. Rhim, and S. Y. Nam, 'Preparation and Gas Barrier Properties of Chitosan/Clay Nanocomposite Film', Membrane Journal., 15, 247 (2005)
  32. M. Darder, M. Colilla, and E. Ruiz-Hitzky, 'Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite', Chem. Mater., 15, 3774 (2003) https://doi.org/10.1021/cm0343047
  33. From Kanebo Ltd. Japan wave site [accessed on 27.08.2002]
  34. C. H. Holten, 'Lactic Acid properties and chemistry of lactic acid and derivatives', Verlag Chemie, Germany (1971)
  35. C. E. Lowe, US Patent, 2, 668, 162 (to dupont) (1954)
  36. J. Lunt, 'Large-scale production, properties and commercial application of polylactic acid polymers', Polym Degrad Stab, 59, 149 (1998)
  37. R. S. Blackburn, X. Zhao, D. W. Farrington, and L. Johnson, 'Effect of D-isomer concentration on the coloration properties of poly(lactic acid)', Dyes and Pigments, 70, 251-258 (2006) https://doi.org/10.1016/j.dyepig.2005.05.011
  38. T. Kashima, T. Kameoka, M. Ajioka, and A. Yamaguchi, US Patent, 5, 428, 126 (1995)
  39. F. Ichikawa, M. Kobayashi, M. Ohta, Y. Yoshida, S. Obuchi, and H. Itoh, US Patent, 5, 440, 008 (1995)
  40. M. Ohta, Y. Yoshida, S. Obuchi, and Y. Yoshida, US Patent, 5, 440, 143 (1995)
  41. P. R. Gruber, E. S. Hall, J. J. Kolstad, M. L. Iwen, R. d. Benson, and R. L. Borchardt, US Patent 5, 142, 023 (1992)
  42. P. R. Gruber, E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson, and R. L. Borchardt, US Patent 5, 247, 058 (1992)
  43. P. R. Gruber, E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson, and R. L. Borchardt, US Patent, 5, 247, 059 (1993)
  44. P. R. Gruber, E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson, and R. L. Borchardt, US Patent, 5, 258, 488 (1993)
  45. P. R. Gruber, E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson, and R. L. Borchardt, US Patent, 5, 274, 073 (1993)
  46. P. R. Gruber, E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson, and R. L. Borchardt, US Patent, 5, 357, 035 (1994)
  47. P. R. Gruber, E. S. Hall, J. J. Kolstad, M. L. Iwen, R. D. Benson, and R. L. Borchardt, US Patent, 5, 484, 881 (1996)
  48. R. Westervelt, 'Borden Resumes PVC Production in Illinois', Chem. Week., 162(3), 9 (2000)
  49. P. Kurcok, J. Penczek, J. Franek, and W. Kedlinski, 'Anionic polymerization of lactones. 14. Anionic block copolymerization of ${\delta}-valerolactone$ and L-Iactide initiated with potassium methoxide', Macromolecules, 25, 2285 (1992) https://doi.org/10.1021/ma00035a001
  50. A. J. Nijenhuis, Y. J. Du, H. A. M. Van Aert, and C. Bastiaansen, 'ABA Type Copolymers of Lactide with Poly(ethylene glycol). Kinetic, Mechanistic, and Model Studies', Macromolecules, 28, 2124 (1995) https://doi.org/10.1021/ma00111a004
  51. H. R. Kricheldorf, I. Kreiser-Saunders, and C. Boettcher, 'Polylactones: 31. Sn(II)octoate-initiated polymerization of L-lactide: a mechanistic study', Polymer, 36, 1253 (1995) https://doi.org/10.1016/0032-3861(95)93928-F
  52. R. G. Sinclair, US Patent 4 045 418 (1997)
  53. R. G. Sinclair, US Patent 4 057 537 (1997)
  54. R. Narayan, 'Degradation of polymeric Materials', Sci and Eng Camp:Design, Environmental, Microbiological and Utilization Aspects (EDs: H. A. Hoitink, H. N. Keener), OARDC, OH (1993)
  55. D. Garlotta, 'Literature review of poly(lactic acid)', J Polym Environ, 9, 61, 84 (2002)
  56. R Vasanthakumary and A. J. Penning, 'Crystallization kinetics of poly(L-lactic acid)', Polymer, 24, 175 (1983) https://doi.org/10.1016/0032-3861(83)90129-5
  57. B. Kalb and A. J. Penning, 'General crystallization behaviour of poly(L-lactic acid)', Polymer, 21, 607 (1980) https://doi.org/10.1016/0032-3861(80)90315-8
  58. H. Tsuji and Y. Ikada, 'Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereo-complexation from the melt', Macromolecules, 26, 6918 (1993) https://doi.org/10.1021/ma00077a032
  59. Y. lkada, K. Jamshidi, H. Tsuji, and S. H. Hyon, 'Stereocomplex formation between enantiomeric poly(lactides)', Macromolecules, 20, 904 (1987) https://doi.org/10.1021/ma00170a034
  60. G. L. Loomis, J. R. Murdoch, US Patent 4 902, 515 (1990)
  61. R. Leaysersuch, 'Biodegradable polyester: packaging goes green. Plastic technology', Online Article, 09/05/02
  62. J. J. Kolstad, 'Crystallization kinetics of poly(L-lactide-co-meso-lactide)', J. Appl. Polym. Sci., 62, 1079 (1996) https://doi.org/10.1002/(SICI)1097-4628(19961114)62:7<1079::AID-APP14>3.0.CO;2-1
  63. J. Huang, M. S. Lisowski, J. Runt, E. S. Hall, R. T. Kean, N. Buehler, and J. S. Lin, 'Crystallization and Microstructure of Poly(L-lactide-co-meso-lactide) Copolymers', Macromolecules, 31, 2593 (1998) https://doi.org/10.1021/ma9714629
  64. R. von Oepen and W. Michaeli, Clin. Mater, 10, 21 (1992) https://doi.org/10.1016/0267-6605(92)90080-D
  65. R. Sinclair, US Patent 5 424 346 (1995)
  66. X. Chen, K. Schiling, and W. Kelly, US Patent 5 756 651 (1998)
  67. S. McCarthy, R. Gross, and W. Ma, US Patent 5 883 1999 (1999)
  68. D. Verser, K. Schiling, and X. Chen, US Patent 5 6333 342 (1997)
  69. J. R. Drogan and J. S. Williams, J. Rheol, 43, 1141 (1999) https://doi.org/10.1122/1.551041
  70. C. Ryan, M. Hartmann, and J. Nangeroni, Polymers, Laminations, and Coations Conf., TAPPI Press, Atlanta, GA p.139 (1997)
  71. A. Nijenhuis, D. Grijpma, and A. Penning, 'Cross-linked poly(-lactide) and $poly({\varepsilon}-caprolactone)$', Polymer, 37, 2783 (1996) https://doi.org/10.1016/0032-3861(96)87642-7
  72. H. J. Lehermeier, J. R. Dorgan, and J. D. Way, 'Gas permeation properties of poly(lactic acid)', J. Memb. Sci., 190, 243-251 (2001) https://doi.org/10.1016/S0376-7388(01)00446-X
  73. D. R Witzke, 'Introduction to properties, engineering, and prospects of polylactide polymers', Ph.D. thesis, Michigan State University, East Lansing, MI (1997)
  74. R. E. Drumright and P. R. Gruber, 'Polylactic acid technology', Adv. Mater., 23, 1841 (2000)
  75. M. Alexander and P. Dubois, 'Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials', Mater. Sci. Eng., R28, 1 (2000)
  76. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, 'Polymer-layered silicate nanocomposites: an overview', J. Appl. Clay. Sci., 15, 11 (1999) https://doi.org/10.1016/S0169-1317(99)00017-4
  77. S. S. Ray and M. Okamoto, 'Polymer/layered silicate nanocomposites: a review from preparation to processing', Prog. Polym. Sci., 28, 1539 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  78. R. Xu, E. Manias, A. J. Snyder, and J. Runt, 'New Biomedical Poly(urethane urea)-Layered Silicate Nanocomposites', Macromolecules, 34, 337 (2001) https://doi.org/10.1021/ma0013657
  79. R. K. Bharadwaj, 'Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites', Macromolecules, 34, 9189 (2001) https://doi.org/10.1021/ma010780b
  80. P. B. Messersmith and E. P. Giannelis, 'Synthesis and barrier properties of $poly({\varepsilon}-caprolactone)-layered$ silicate nanocomposites', J. Polym. Sci. Part. A: Polym. Chem., 33, 1047 (1995) https://doi.org/10.1002/pola.1995.080330707
  81. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. kamigaito, 'Synthesis and properties of polyimide-clay hybrid', J. Polym. Sci. Par. A: Polym. Chem., 31, 2493 (1993) https://doi.org/10.1002/pola.1993.080311009
  82. S. S. Ray, K. Yamada, M. Okamoto, and K. Ueda, 'Polylactide-Layered Silicate Nanocomposite: A Novel Biodegradable Material', Nano. Lett., 2, 1093 (2002) https://doi.org/10.1021/nl0202152
  83. R. A. Vair, K. D. Jandt, E. J. kramer, and E. P. Giannelis, 'Kinetics of Polymer Melt Intercalation', Macromolecules, 28, 8080 (1995) https://doi.org/10.1021/ma00128a016
  84. R. Krishnammorti, R. A. Vaia, and E. P. Giannelis, 'Structure and Dynamics of Polymer-Layered Silicate Nanocomposites', Chem. Mater., 8, 1728 (1996) https://doi.org/10.1021/cm960127g
  85. M. W. Cho and Y. W. Chang, 'Synthesis and physical properties of polyurethane/clay nanocomposites', J. Korean Ind. Eng. Chem., 11, 517 (2000)
  86. J. S. Park, J. W. Rhim, H. S. Goo, I. H. Kim, and S. Y. Nam, 'Membrane Applicateion of Polymer/Layered silicate Nanocomposite', Membrane Journal, 15, 255 (2005)
  87. J. S. Chen, M. K. Poliks, C. K. Ober, Y. Zhang, U. Wiesner, and E. P. Giannelis, 'Study of the interlayer expansion mechanism and thermal-mechanical properties of surface[hyphen]initiated epoxy nanocomposites', Polymer, 43, 4895 (2002) https://doi.org/10.1016/S0032-3861(02)00318-X
  88. P. Maiti and M. Okamoto, 'Crystallization Controlled by Silicate Surfaces in Nylon 6-Clay Nanocomposites', Macromol. Mater. Eng., 288, 440 (2003) https://doi.org/10.1002/mame.200390040
  89. C. Oriakhi, 'Nano sandwiches', Chem. Br. 34, 59-62 (1998)
  90. Y. Kojima, A, Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Karauchi, and O. Kamigaito, 'Mechanical properties of nylon-6-clay hybrid', J. Mater. Res., 8, 1185-1189 (1993) https://doi.org/10.1557/JMR.1993.1185
  91. R. Krishnamoorti and E. P. Giannelis, 'Rheology of End-Tethered Polymer - Layered Silicate Nanocomposites', Macromolecules, 30, 4097 (1997) https://doi.org/10.1021/ma960550a
  92. B. Lepoittevin, N. Pantoustier, M. Deva1ckenaere, and M. P. Dubois, '$Poly(epsilon\;{\varepsilon}-caprolactone)/clay$ nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide', Macromolecules; 35, 8385-8390 (2002) https://doi.org/10.1021/ma020300w
  93. C. Zilg, R. Thomann, J. Finter, and R. Mulhaupt, 'The influence of silicate modification and compatibilizers on mechanical properties and morphology of anhydride-cured epoxy nanocomposites', Macromolecular Materials and Engineering., 280, 41-46 (2000) https://doi.org/10.1002/1439-2054(20000801)280:1<41::AID-MAME41>3.0.CO;2-Z
  94. Y. C. Ke, J. K. Lu, X. S. Yi, J. Zhao, and Z. N. Qi, 'The effects of promoter and curing process on exfoliation behavior of epoxy/clay nanocomposites', J. Appl. Polym. Sci., 78, 808-815 (2000) https://doi.org/10.1002/1097-4628(20001024)78:4<808::AID-APP140>3.0.CO;2-9
  95. M. Wang and T. J. Pinnavaia, 'Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin', Chem. Materials., 6, 468 (1994) https://doi.org/10.1021/cm00040a022
  96. P. B. Messersmith and E. P. Giannelis, 'Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites', Chem. Mater., 6, 1719 (1994) https://doi.org/10.1021/cm00046a026
  97. J. M. Brown, D. Curliss, and R. A. Vaia, 'Thermoset-Layered Silicate Nanocomposites. Quaternary Ammoniwn Montmorillonite with Primary Diamine Cured Epoxies', Chem. Mater., 12, 3376-3384 (2000) https://doi.org/10.1021/cm000477+
  98. P. Aranda and E. Ruiz-Hitzky, 'Poly(ethylene oxide )-silicate intercalation materials', Chem. Mater., 4, 1395-1403 (1992) https://doi.org/10.1021/cm00024a048
  99. D. J. Greenland, 'Adsorption of poly(vinyl alcohols) by montmorillonite', J. Colloid. Sci., 18, 647-664 (1963) https://doi.org/10.1016/0095-8522(63)90058-8
  100. C. W. Francis, 'Adsorption of polyvinylpyrrolidone on reference clay minerals', Soil. Sci., 115, 40-54 (1973) https://doi.org/10.1097/00010694-197301000-00007
  101. X. Zhao, K. Urano, and S. Ogasawara, 'Adsorption of poly(ethylene vinyl alcohol) from aqueous solution on montmorillonite clays', Colloid. Polym. Sci., 267, 899-906 (1989) https://doi.org/10.1007/BF01410338
  102. G. Jimenes, N. Ogata, H. Kawai, and T. Ogihara, 'Structure and thermal/mechanical properties of $poly({\varepsilon}-caprolactone)-clay$ blend', J. Appl. Polym. Sci., 64, 2211-2220 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970613)64:11<2211::AID-APP17>3.0.CO;2-6
  103. H. G. Jeon, H. T. Jung, S. W. Lee, and S. D. Hudson, 'Morphology of polymer silicate nanocomposites. High density polyethylene and a nitrile', Polym. Bull., 41, 107-113 (1998) https://doi.org/10.1007/s002890050339
  104. S. Bandyopadhyay, R. Chen, and E. P. Giannelis, 'Biodegradable organic-inorganic hybrids based on poly(P-lactide)', Polym. Mater. Sci. Eng., 81, 159 (1999)
  105. V. A. Dritis and C. Tchoubar, 'X-ray diffraction by disordered lamellar structure', New York: Springer-Verlag, p21-22 (1990)
  106. B. D Cullity, 'Principles of X-ray diffraction', Reading, MA: Addison-Wesley (1978)
  107. D. shia, C. Y. Hui, S. D. Burnside, and E. P. Giannelis, 'An interface model for the prediction of Young's modulus of layered silicate-elastomer nanocomposites', Polym Compos, 19, 409 (1998)
  108. L. Nielsen, 'Platelet particles enhance barrier of polymers by forming tortuous path', J. Macromol. Sci. Chem., A1(5), 929 (1967)
  109. A. A. Gusev and H. R. Lusti, 'Rational design of nanocomposites for barrier applications', Adv. Mater., 13, 1641 (2001) https://doi.org/10.1002/1521-4095(200111)13:21<1641::AID-ADMA1641>3.0.CO;2-P