Effects of KATP Channel Blocker, cAMP and cGMP on the Cardiovascular Response of Adenosine A1 Agonist in the Spinal Cord of the Rats

  • Shin In-Chul (Department of Pharmacology, College of Medicine, Hanyang University)
  • Published : 2006.06.01

Abstract

This study was performed to investigate the influence of the spinal adenosine $A_1$ receptors on the central regulation of blood pressure (BP) and heart rate (HR), and to define whether its mechanism is mediated by cyclic AMP (cAMP), cyclic GMP (cGMP) or potassium channel. Intrathecal (i.t.) administration of drugs at the thoracic level were performed in anesthetized, artificially ventilated male Sprague-Dawley rats. I.t. injection of adenosine $A_1$ receptor agonist, $N^6$-cyclohexyladenosine (CHA; 1, 5 and 10 nmol) produced dose dependent decrease of BP and HR and it was attenuated by pretreatment of 50 nmol of 8-cyclopentyl-1,3-dimethylxanthine, a specific adenosine $A_1$ receptor antagonist. Pretreatment with a cAMP analogue, 8-bromo-cAMP, also attenuated the depressor and bradycardiac effects of CHA (10 nmol), but not with cGMP analogue, 8-bromo-cGMP. Pretreatment with a ATP-sensitive potassium channel blocker, glipizide (20 nmol) also attenuated the depressor and bradycardiac effects of CHA (10 nmol). These results suggest that adenosine $A_1$ receptor in the spinal cord plays an inhibitory role in the central cardiovascular regulation and that this depressor and bradycardiac actions are mediated by cAMP and potassium channel.

Keywords

References

  1. Barraco, R. A., Campbell, W. R., Parizon, M., Shoener, E. P. and Shein, S. E. (1987). Cardiovascular effects of microinjections of adenosine analogs into the fourth ventricle of rats. Brain Res. 424, 17-25 https://doi.org/10.1016/0006-8993(87)91188-7
  2. Barraco, R. A., El-Ridi, M. R., Ergene, E. and Phillis, J. W. (1991). Adenosine receptor subtypes in the brain stem mediate distinct cardiovascular response. Brain Res. 26, 59-84 https://doi.org/10.1016/0361-9230(91)90192-M
  3. Barraco, R. A., Janusz, C. A., Parizon, M., Posalek, P. M. and Roberts, P. A. (1988). Cardiovascular effects of microinjection of adenosine into the nucleus tractus solitarius. Brain Res. Bull. 20, 129-132 https://doi.org/10.1016/0361-9230(88)90016-0
  4. Barraco, R. A., Janusz, C. A., Shoener, E. P. and Simpson. L. L. (1990). Cardiorespiratory function is altered by picomol injections of 5'-N-ethylcarboxamidoadenosine into the nucleus tractus solitarius of rats. Brain Res. 507, 234-246 https://doi.org/10.1016/0006-8993(90)90277-I
  5. Bredt, D. S., Glatt, C. E., Hwang, P. M., Fotuhl, M., Dawson, T. M. and Snyder, S. H. (1991). Nitric oxide synthetase protein and m-RNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7, 615-624 https://doi.org/10.1016/0896-6273(91)90374-9
  6. Brown, S. J., James, S., Reddington, M. and Richardson, P. J. (1990). Both Al and $A_{2a}$ purine receptors regulate striatal acetylcholine release. J. Neurochem. 55, 31-38 https://doi.org/10.1111/j.1471-4159.1990.tb08817.x
  7. Bruns, R. F., Fergus, J. H., Badger, E. W., Bristol, J. A., Santay, L. A., Hartman, J. D., Hays, S. J. and Huang, C. C. (1987). Binding of the $A_{1}$-selective adenosine antagonist 8-cyclopentyl-1,3-diproxylxanthine to rat brain membranes. Naunyn-Schmiedebergs Arch. Pharmacol. 335, 59-63 https://doi.org/10.1007/BF00165037
  8. Choca, J. I., Green, R. D. and Proudfit, H. K. (1988). Adenosine $A_{1}$ and $A_{2}$ receptors of the substantia gelatinosa are located predominantly on intrinsic neurons: an autoradiographic study. J. Phamacol. Exp. Ther. 247, 757-764
  9. Choca, J. I., Proudfit, H. K. and Green, R. D. (1987). Identification of $A_{1}$ and $A_{2}$ adenosine receptors in the rat spinal cord, J. Pharmacal. Exp. Ther. 242, 905-910
  10. Coardetti, R., Lo Conte, G., Moroni, F., Passani, M. B. and Peteu, G. (1984). Adenosine decrease aspartate and glutamate release from rat hippocampal slices. Eur. J. Pharmacol. 104, 19-26 https://doi.org/10.1016/0014-2999(84)90364-9
  11. Daly, J. W., Butts-Lamb, P. and Padgett, W. (1983). Subclass of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol. Biol. 3, 69-80
  12. Gerber, U. and Gahwiler, B. H. (1994). $GABA_{B}$ and adenosine receptors mediate enhancement of the $K^{+}$ current,$I_{AHP}$by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons. J. Neurophysiol. 72, 2360-2367 https://doi.org/10.1152/jn.1994.72.5.2360
  13. Gordon, F. J. (1985). Spinal GABA receptors and central cardiovascular control, Brain Res. 328, 165-169 https://doi.org/10.1016/0006-8993(85)91338-1
  14. Hassessian, H., Prat, A, Champlain, J. D. and Couture, R (1991). Regulation of cardiovascular sympathetic neuons by substance P and gamma arninobutyric acid in rat spinal cord. Eur. J. Pharmacol. 202,51-60 https://doi.org/10.1016/0014-2999(91)90252-L
  15. Koh, H. C., Shin, I. C., Hwang, S. J. and Paik, D. J. (1996). Modification of cardiovascular response of adenosine $A_{1}$ receptor agonist by cyclic AMP in the spinal cord of the rats. Neurosci. Lett. 219, 195-198 https://doi.org/10.1016/S0304-3940(96)13205-5
  16. Koh, H. C., Lee, T. K., Kang, J. S., Lee, C. H., Lee, H., Paik, D. J. and Shin, I. C. (2000). Modification of cardiovascular response of adenosine $A_{2}$ receptor agonist by adenylate cyclase in the spinal cord of the rats. Neurosci. Lett. 293, 45-48 https://doi.org/10.1016/S0304-3940(00)01486-5
  17. Jiang, H., Colbran, J. L., Francis, S. H. and Corbin, J. D. (1992). Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J. Biol. Chem. 267, 1015-1019
  18. Lee, S. B., Koh, H. C., Kim; O. N., Sung, K. W. and Kim, S. Y. (1996). Intrathecal administration of sodium nitroprusside, a nitric oxide donor, increases blood pressure in anesthetized rats. Neurosci. Lett. 203, 53-56 https://doi.org/10.1016/0304-3940(95)12269-9
  19. Londos, S., Cooper, D. M. F. and Wolff, J. (1987). Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. USA 77, 2551-2554
  20. Mosqueda, G. R., Tseng, C. J., Appalsamy, M., Beck, C. and Robertson, D. (1991). Cardiovascular excitatory effects of adenosine in the nucleus of the solitary tract. Hypertension 18, 494-502 https://doi.org/10.1161/01.HYP.18.4.494
  21. Nicoll, R. A. (1988). The coupling of neurotransmitter receptor to ion channels in the brain. Science 241, 545-551 https://doi.org/10.1126/science.2456612
  22. Phillis J. W., Edstrom, J. P. Kostopoulos, G. K. and Kirkpatrick, J. R. (1979). Effects of adenosine and adenine nucleotides on synaptic trasnmission in the cerebral cortex, Can. J. Pharmacol. 57, 1289-1312 https://doi.org/10.1139/y79-194
  23. Sighart, W. (1992). GABAA receptors: ligand-gated $Cl^{-}$ ion channels modulated by multiple dmg binding sites. Trends Pharmacol. Sci. 13, 446-450 https://doi.org/10.1016/0165-6147(92)90142-S
  24. Stella, L. Berrino, L., Maione, S., de Novellis, F. and Rossi, F. (1993). Cardiovascular effects of adenosine and its analogue in anesthetized rats. Life Sci. 53, 755-763 https://doi.org/10.1016/0024-3205(93)90497-Q
  25. Stone, G. A., Jarvis, M. F., Sills, M. S., Weeks, B., Snowhill, E. W. and Williams, M. (1988). Species differences in high affinity adenosine $A_{2}$ binding sites in striatal membranes from mammalian brain. Drug Dev. Res. 15, 31-46 https://doi.org/10.1002/ddr.430150104
  26. Tao, S. and Abdel-Rahman, A. A. (1983). Neuronal and cardiovascular response to adenosine microinjection into the nucleus tractus solitarius. Brain Res. Bull. 32, 407-417
  27. Tmssel, L. O. and Jackson, M. B. (1985). Adenosine-activated potassium conductance in cultured striatal neurons. Proc. Natl. Acad. Sci. USA. 82, 4857-486l
  28. Van Calker, D., Muller, M. and Hamprecht, B. (1979). Adenosine regulates via .two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33, 999-1005 https://doi.org/10.1111/j.1471-4159.1979.tb05236.x
  29. Watts, A. E., Hicks, G. A. and Henderson, G. (1995). Putative preand postsynaptic ATP-sensitive potassium channels in the rat substantia nigra in vitro. J. Neurosci. 15(4), 3065-3074 https://doi.org/10.1523/JNEUROSCI.15-04-03065.1995