AN AT (F AT A7) EdTt e A, A268 BE, 2006,
Journal of Industrial Technology, Kangwon Natl. Univ., Korea, No. 26 B, 2006.

Visualizer: An Interactive Execution Tool for Java Programs

Kim, Hyung-Rok’

Kim, Yong-Seok”

Abstract

Effective use of debugging in computer science education is a topic that has

received little attention. Existing tools either are too overwhelming for the novice
or are too basic and inflexible. Furthermore, the integration of the debugger into
complex IDEs have unfamiliar debuggers from students, resulting in a harmful
proliferation of console /O. In this paper, a new stand-alone educational debugging
tool is presented, with simple but powerful tools for easily observing and modifying

program execution state. This tool Is analyzed from an user perspective, and is

compared with existing tools.

Keywords : Interactive Execution, Java, Debugger, IDE

1. Introduction

Traditional command-line debuggers, like gdb
and jdb, have been available for a vervy long
time

since Unix and the C programming
language became dominant. However, these
programs, often considered complicated and

and difficult to for
most computer users today, who are accustomed

to graphic user interfaces (GUIs){1,2].
Also,

arcane, are unfamiliar use

debuggers within integrated

* Korea Science Academy, Student
Dept.

Computer Science and Engineering,

Kangwon National University, Professor

[

development environments (IDEs) such as
NetBeans, Eclipse, and Visual Studio, although
widely used, are typically designed for
professional programmers and are not
emphasized by students and instructors, despite
the fact that actually examining the actual
program flow is an integral part of
programming[3,4,5].

To address this problem, there has been

attempts at educational, alternative IDEs suitable
for student use, such as Blue] and DrJava, but
targetted at simplifying
debugging for students. These are enumerated
in the Related Works

none are specifically

and examined in detail
section[6,7,11,12].

Faced with the lack of such programs, many

novice programmers resort to the use of

oAl

Gl EHH Bt Y rlEd A =EF), Hd BE, 2006
Kim, Hyung-Rok Kim, Yong-Seok

primitive console /O (such as printf in C,
std::cout in C++ or System.out in Java).
Such approaches are bad for several reasons:

¢ Performance: Redundant logging can slow
down performance considerably, as I/O is
very slow compared to other operations a
student program might perform.

e Difficulty of use: In order to print logging
output, the quantities logged must be
converted to string form. Although in Java
all classes have a toString method, it still
requires the implementation of toString for
every class, which is annoying.

e Difficulty of removal: When polishing a
program for final release, all the logging
statements must be
Although there are idioms (such as
#define NDEBUG) and libraries (such as
java.util.logging) that ameliorate these
problems, such frameworks are often difficult
to use.

removed manually.

o Ineffectiveness: Haphazard, random,
inconsistent logging is not very helpful; the
student is confused by other logging
statements.

e Bad habits: Habitual use of console /O is

unacceptable in professional GUI
programming. Abusing console I/O at such
early stages encourages formation of bad,

hard-to-break habits.

Thus, in order to fill this void, we have
developed a tool Visualizer that
introduces and explains program execution to

named

beginners and eases debugging. The architecture
and implementation of this program will be
detailed in the following sections.

2. Implementation

2.1 Which language?

There are many widely—used programming
languages in the computing world, each with
different linking models and means of execution,
and it is not feasible to create one tool that will
handle all of these languages.

In rankings of programming language
popularity (such as the well-known one from
TIOBE Software){8], the Java programming

language from Sun Microsystems, Inc., has

consistently held the top position for over a
yvear, followed by other languages like C and
Visual Basic. Also, Java is widely used in
Introductory programming courses. For instance,
College Board recently switched to Java from
C++ for their Ccmputer Science exams. This
widespread usage of Java makes it an attractive
candidate.

Also, Java's dynamic nature, unlike more
static languages such as C or C++, enable more
flexible and intuitive interface. Of note are
Java's extensive introspection facilities, defined
in the core library in java.lang.reflect, and
JPDA (Java Platform Debugging Architecture)[9],
Sun's APl for manipulating the Java Virtual
Machine itself, also in the standard library; these
enable direct observation and monitoring of
program state through well-defined APlIs.

Thus, Visualizer supports programs written in
the Java programming language, and 1s itself
written in Java to utilize the rich Java APIls
mentioned above.

2.2 Displaying execution state

Traditional IDEs, as noted, have overly
complex user interfaces that alienate neophytes.
For instance, Fig. 1 shows the integrated
debugger of a widely used Java IDE, NetBeans.
Note the presence of various other functionality,
including extraneous buttons, toolbars, menus,
and tabs. Although this might provide useful
functionality to professional, seasoned
programmers, novices are often overwhelmed by
this complexity. A useful Ul design should cut

back and simplify.

In comparison, the Visualizer window, shown
in Fig. 2, is completely different. Most of
features unrelated to the observation of program
execution, including editing, have been cut out.
Also, the relevant displays, such as the list of
classes and variables, have been clearly labeled,
aiding comprehension. Such a minimal interface
might feel too drastic, but the simplicity is
ultimately beneficial, as it clarifies the interface.

The interface consists primarily of five

displays:

e The source display, located in the left half of
the window, which displays the source code
and highlights the line to be executed.

- 216 -

HHZlEedNFAN G Gl d s =EY), ABH BE, 2006

Visualizer: An Interactive Execution Tool for Java Programs

S i i
few levigate Source Refgctor Build HBun CVS Mansgement Collsborate Profie Tools Window Help
B R & e v

¥ x5 watches ¥ X tocal variables Call Stack
Visualzer {debug) * Debugger Console - tiame Tope v =
N sneniMa ~

v e

e prisg 0 rLonio;

Fig. 1 A typical debugging session within
NetBeans 5.5

e ~ Variables args in Test main(java la
a in Test.main(java.lang.

IMEOET Javax.swing. 7.

Fuclic <lass Test {

public static wvao < 4
ut.pr Classes class Test (loaded by in¢
< >

{1 Show system classes

7Stam.cut, pr Evaluate Enter JS expr

potn ot e~

TSTam. Ut [eval result]
inputs
r=adp oSystem.in
JFstem. out . pr System, out System,err
Fzo frz=nzw i

Hello, world

[Next || Quit]

Fig. 2 A typical Visualizer session.

* The vaniable display, located in the top right
which lists the
accessible variables in the current stack

corner of the window,
frame, including local variables and method
arguments.

® The class displav, located in the middle right
section of the which lists the

classes. An

window,

currently loaded option s
available to filter out array classes, classes
from the standard librarv, and classes that
are specific to the virtual machine and show
only custom classes.

® The 170 display. located in the lower right

section of the window, which represents

System.in, System.out, and System.err,
he three standard streams of Java. These
correspond to stdin, stdout, and stderr
in C, respectively.

® The scripting display, located between the
I/O display and the class display. This will
be explained further in the next section.

The class and variable displays have context
menus that list the available fields and methods,
as shown in Fig. 3. For arrays, this shows the
elements of the array; for primitive values (such
as int and char) and strings, the valuc is shown
directly.

ables finput in Test.main{java. ~
args in
< getMessage

Test$Fao: instance of Test$Foo(i

15565 class To ; pnv‘Method‘
class Test$Foo (loaded by registerNatives
getClass
P » hashCode
- . equals
... Show system classes clone
Auate Eqter JS expr 1oSting
[eval result] notity
, notify&ll 3
2m.in
wait 3
sem.out System,err wait M
i ~ wait
finalize

Other methods »

Fig. 3 The context menu in class and variable
displays.

2.3 Interactive evaluation

An interesting feature is the support of
interactive evaluation of expressions during
execution. This feature utilizes the new scripting
integration in the upcoming Java SE 6
Ginformally known as Mustang), specified by
Java Specification Request (JSR) 223[10]. Short
code snippets of scripts may be entered in the
scripting display, as shown in Ilg. 4, and a
scripting evaluates the
snippet, within the stack frame of the currently

executing Java

engine dynamically

program, and sharing the
variable name space. Using scripting languages,
such as ECMASecript (ie. Javascript), Python, or
Ruby, one can dynamically observe program
state, evaluate expressions, and change program
behavior.

Mzl G st M rled P HET), A6 BE, 206

Kim, Hyung Rok

"A} Variables 3 in Test.main(java.lar
i in Test,main(java.lan;
args in Test.main(java

< >

Classes ‘class Test (loaded by

£ 2
"1 Show system classes
| Evaluate |g.i o
30
iny
. System.in

Systemn,aut | System, et

{ . Hzllo, world!

Fig. 4 The scripting display.

A scripting convenient
syntactic

convenience in

language, with
shortcuts and dynamic typing, offer
writing little,
snippets than more restrictive, statically typed
languages. Also, it was felt that the existing

throw-away

syntaxes of Java-like scripting languages, such
as ECMAScript, Groovy, and BeanShell are
similar cnough to Java that students would have
Indeed, it would not be
obvious to most students without prior exposure

no trouble adapting.

to such languages that a different language was
being used. In addition, evaluation of Java
expressions require on-the-fly compilation and
other technical difficulties. Nevertheless, it should
be noted that DrJava, further discussed in the
Related Works section, takes this approach.

3. Applications

Visualizer can be used for educational

purpose. Some of benefits are illustrated below.
Resolving the cause of bugs:

This is the classic debugger use case. A
debugger’s benefits in debugging is widely
known, and will not be elaborated here.

Exploring and understanding an unfamiliar
program:

Another common, but often neglected use of a

debugger is in understanding how an

unfamiliar piece of code operates. By

following the sequence of method calls, a

Kim, Yong-Scok

better
understanding of the internal implementation
of a program, especially novices who often
have trouble reading difficult source code and
who are without the aid of a professional
IDE.

programmer can often have a

Dynamic, run-time testing:

Still another use made possible by the
scripting features of Visualizer is to modify
variables and other parameters at run time,
and see the Often,
manually changing the value of a vanable
and recompiling is tedious and error-prone,
and building a GUI interface for such tasks is

even more difficult. By making such changes

resulting execution.

at run time, such manual activities may be
reduced.

Learning control flow:

as the
executing line highlighted by
Visualizer moves around, a student can get a
better understanding of control structures and
method invocation.

By observing the flow of control
currently

Understanding the internals of the run-time
environment:

Finally, Visualizer can be used to gain a
better understanding of the Java Runtime
Environment (JRE) and computers in general.
A typical novice's mental model of the JRE is
that of a black box that somehow executes
the fed program magically. Although such
abstraction and simplification might be argued
beneficial, such might give
impressions to the beginner. For
instance, a common misconception of neophyte
Java programmers with a C or C++
background is that the methods in a Java
classes, like C functions, are statically linked.
This is clearly not the case in Java; a glance
at the class display would show that class
files are loaded by the JVM on-the-fly as
needed.

to be actually
false

Also, one can learn that many
bootstrap classes, including the classes in
APIs internal to the JVM, are invoked before

the main method is run.

HYrlE N g e te =), A6 BE, 2006

Visualizer: An Interactive Execution Tool for Java Programs

4. Related Works

A number of development tools dedicated to
educational use have been developed. Here, two
such tools, namely Blue] and DrJava, are
presented and compared to Visualizer.

Table 1 Comparison of debuggers in educational

use
Visualizer Blue] Drla.a
Int: ti .
Elerac .1ve Yes No Partial"’
Evaluation
Simpl
{mpie Yes Yes No
Interface

1) Not integrated with the debugger

41 Blued

Blue], described in detail in the paper [6], is
a JavalDE suitable for educational use, with
class diagrams and interactive object
manipulation. It emphasizes good design
practices, such as unit testing {(with JUnit) and
documentation, and has an integrated debugger
as well.

Its integrated debugging tool is simple, light,
and well-integrated, as shown in Fig. 5. It
offers basic debugging functionalities, such as
break points, stepping, and halting, with an
elementary interface suitable for beginners’ use.
However, it neither displays classes, nor does it
enable one to interactively observe and modify a
program during execution, like Visualizer.

Privaie s vatianie_anscaner) [N, i x4
= v
* Erpanrukior fin finexce cer fiGadN
D) matn (at breasgoing;
it Demonsteationsliy
¢
p variale static 1 = 0; ‘
ool Sowancn - [l vasables
* Erispielnethcde, Auspae enn fr varsatte _statee_1 - 1
BBIVC 2 WELCeSoRehang ()
4o Bnctancs veosbios
i o vatisble_local | = 15 it voriable_instance_1 -0
. cervable_statac 1 w1
- varieble, fnstance
Syates.out.pranrin
3ystes.out.prantin | P
e fan 3els AL 1ot it variotle_local 3~ 1
. ouc.pntiag y
wariable toral L v var
System.cut printini i
)
Syatem. ot printn(" i % | »
' 4 E “I Ee x .
S erovonts:

' Step into Contine | Ty

Fig. 5 The integrated debugger in Blued.

42 Drlava

Drjava, described in detail in the paper |71, is
another Java IDE aimed at ncophyvtes. It is
modeled after the famed DrScheme

environment{13] for Scheme.

Its primary feature of interest 1is its
DrScheme-like interactive evaluation of Java
commands, as shown in Fig. 6 a very
convenient feature at times. However, this
dynamic evaluation is not coupled with
execution; that is, this feature cannot be used to

modify a program while it is running, unlike

Visualizer.
52 Orjava File Edit Tools Dehuguer Hely
[XPE) LISt - £ java
] R i ity B0 oo Ak R
.
¥
a v -
ol
. «
i ¢
b et getieogihin) "

... iwaracions ¥ Censole ” Compiter Outowt

L P TS, Erpte ORI

UsersJeress nestsncs Ustyava 313

Fig. 6 Interactive evaluation in DrJava.

DrJava also has integrated debugging support,
a scan be seen in Fig. 7, which is slightly more
advanced and more traditional than that of
BlueJ, with watches, call stack, and other
advanced features. However, this decbugger is
also limited to standard features found in other
debuggers, with little dynamic features.

Al

e T Jous Dvmesr
Do @05 . Ot K cal B cory: & ram

e < o

B tma . Camplia AN Roast Fam

et getLength(y |
i e restgettemth(l

ringhelp) |

e

LISt e List \ mew Cons(7, Ematy. o)

Sreskprat b sa class Cons (Trae 86]

kot g

Fig. 7 Integrated debugger in Drlava

219 -

MGl ANFHY G NG| sd e =EF), A6 BI, 2006
Kim, Hyung-Rok Kim, Yong-Seok

5. Conclusions and Future Works

Current debugging tools are either too
complicated and abstruse or too basic to be used
In computer science education today. Visualizer
is an attempt to rectify this situation, and has
already made much progress. The dynamic
execution of scripting languages is stable and

working well.

However, Visualizer is still rather primitive
its of program
essentially as plain text. Diagrams and pictures
would be a more comprehensible and visually
pleasing alternative. This currently being
addressed.

in presentation elements:

1s

References

gdb (GNU Project Debugger).
http:// gnu.org/ software/gdb.

[2] jdb (The Java Debugger).
http:// java.sun.com/products/jpda/jdb.html.

{3] NetBeans IDE. http://netbeans.org/ ide.

[4] Eclipse JDT (Java Development Tools).
http://eclipse.org/jdt.

[5] Microsoft Visual Studio.
http://micro soft.com/vstudio.

[6] Michael Koling, Bruce Quig, Andrew
Patterson, and John Rosenberg. The Blue]
system and its pedagogy. Journal of
Computer Science Education (Special issue
on Learning and Teaching Object
Technology), 13(4), pp. 249-268, December
2003.

[71 Eric Allen, Robert Cartwright, and Brian
Stoler. DrJava: A lightweight pedagogic
environment for Java. In Deborah Knox,
editor, The 33rd ACM Technical
Symposium on Computer Science
Education. ACM SIGCSE, 2002.

[8] TIOBE Software BV. Tiobe programming

community index.
http://www.tiobe. com/tpeihtml.

[9] Java Platform Debugger Architecture.
http://java.sun.com/products/jpda.

[10] JSR 223: Scripting for the Java Platform.
http://jcp.org/en/jsr/detail 7id =223.

[11] Blue]. http://bluej.org.

[12] DrJava. http://drjava.org.

{131 Robert Bruce Findler, John Clements,
Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Paul Steckler, and Matthias

Felleisen. DrScheme: A programming
environment for Scheme. Jourmal of
Functional Programming, pp. 159-182,
2002.

