Explorations of the Electrostatic Character of a Model of Human Immunodeficiency Virus Type 1 Integrase to Offer a Prediction for the Orientation and Nature of DNA binding

  • Jung, Eun-Sun (Department of Chemical Engineering, Kangwon National University) ;
  • Kwon, Yong-Jung (Department of Chemical Engineering, Kangwon National University)
  • 발행 : 2006.08.31

초록

Human immunodeficiency virus type 1 (HIV-1) integrase plays a critical role in the life cycle of the HIV virus. An ability to accurately map its electrostatic potential, and then use this information to predict the manner in which DNA will bind to the active site of the catalytic domain could provide a foundation for inhibitory design. Attempts to discern the crystal structure of HIV-1 integrase have proven problematic, especially in the region of enzymatic activity, that being those residues involved in the catalysis of the integration of viral DNA into the host cell. However, there is a structural correlation in to the region of interest with avian sarcoma virus (ASV), so a homology model utilizing this similarity was constructed to approximate the behavior/structure of the undetermined portions of the HIV-1 integrase crystal. After this model was constructed and its energy minimized, electrostatic calculations were carried out on the substance, so that an electrostatic potential map was constructed. Using this information, it was determined that DNA binding was oriented so as to exploit the regions of positive potential nearby the active site, as well as the positive potential of the magnesium cofactors.

키워드