DOI QR코드

DOI QR Code

AFLC에 의한 유도전동기 드라이브의 ANN 센서리스 제어

ANN Sensorless Control of Induction Motor Dirve with AFLC

  • 정동화 (순천대학교 정보통신공학부) ;
  • 남수명 (순천대학교 대학원 전기공학과)
  • 발행 : 2006.01.31

초록

본 논문에서는 유도전동기의 벡터제어를 위한 ANN 센서리스 제어와 속도제어를 위한 AFLC를 제안하였다. AFLC 설계는 적응 메카니즘을 통해 퍼지 룰 베이스의 수정자를 갱신하여 실행할 수 있고 유도 전동기의 속도 추정을 위한 ANN 센서리스 제어는 BPA를 통해 수행하였다. 유도전동기의 지령속도와 실제속도는 BPA를 통해 그 오차를 줄일 수 있고, 이러한 알고리즘은 다른 전동기 드라이브에 적용이 용이하다. 본 논문에서 제시한 AFLC 및 ANN 제어의 응답특성을 분석하고 그 결과를 제시한다.

This paper is proposed for a artificial neural network(ANN) sensorless control based on the vector controlled induction motor drive, or proposes a adaptive fuzzy teaming control(AFLC). The fuzzy logic principle is first utilized for the control rotor speed. AFLC scheme is then proposed in which the adaptation mechanism is executed using fuzzy logic. Also, this paper is proposed for a method of the estimation of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

키워드

참고문헌

  1. C. Schauder, 'Adaptive speed identification for vector control of induction motors,' IEEE Trans. on IA, pp.1054-1061, 1992
  2. F. Z. Feng, T. Fukao, 'Robust speed identification for speed sensorless vector control of induction motors,' IEEE Trans. on IA, vol. 30, no. 5, pp. 1234-1240, 1994
  3. H. Kubota and K. Matsuse, 'Speed sensorless field oriented control of induction motor with rotor resistance adaption,' IEEE Trans. on IA, vol. 30, no. 5, pp.1219-1224, 1994
  4. D. H. Chung, 'Fuzzy control for high performance vector control of PMSM drive system,' KIEE, vol. 47, no. 12, pp. 2171-2180, 1998
  5. P. L. Jansen, et al., 'Observer-based direct field orientation analysis and comparison of alternative method,' IEEE Trans. on IA, vol. 30, no. 4, pp. 945-953, 1994
  6. G. Yang and T. H. Chin, 'Adaptive speed identification scheme for vector controlled speed sensorless inverter induction motor drive,' IEEE Trans. on IA, vol. 29, no. 4, pp. 820-825, 1993
  7. G. Henneberger, et al., 'Field oriented control of synchronous and asynchronous drives without mechanical sensors using a kalman filter,' EPE, Firenze, pp.3.644-671, 1991
  8. K. S. Narendra and K. Parthasarthy, 'Identification and control of dynamical system using neural network,' IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 4-27, 1990 https://doi.org/10.1109/72.80202
  9. Cybenko, 'Approximations by superposition of a sigmoidal function,' Mathematics of Contr., Signals and Syst., vol. 2, pp. 303-314, 1989 https://doi.org/10.1007/BF02551274
  10. A. K. Toh, E. P. Nowicki and F. Ashrafzadeh, 'A flux estimator for field oriented control of an induction motor using an artificial neural network,' IEEE IAS Conf. Rec. Ann. Meet., vol. 1, pp. 585-592, 1994
  11. M. T. Wishart and R. G. Harley, 'Identification and control of induction machines using neural networks,' IEEE Trans. IA, vol. 31, no. 3, pp. 612-619, 1995
  12. I. J. Leontaritis and S. A. Billings, 'Input-output parametric models for nonlinear systems,' Int. J. Contr., vol. 41, pp. 303-344, 1985 https://doi.org/10.1080/0020718508961129
  13. S. M. Nam, J. C. Lee, H. G. Lee and D. H. Chung, 'Speed estimation and control of induction motor drive using hybrid intelligent control,' International Conference ICPE'04, no. 3, pp. 181-185, 2004